ANEXO 1: FICHAS DE LAS ARPSIS

Δ	P	PSI
-	ľ	. J

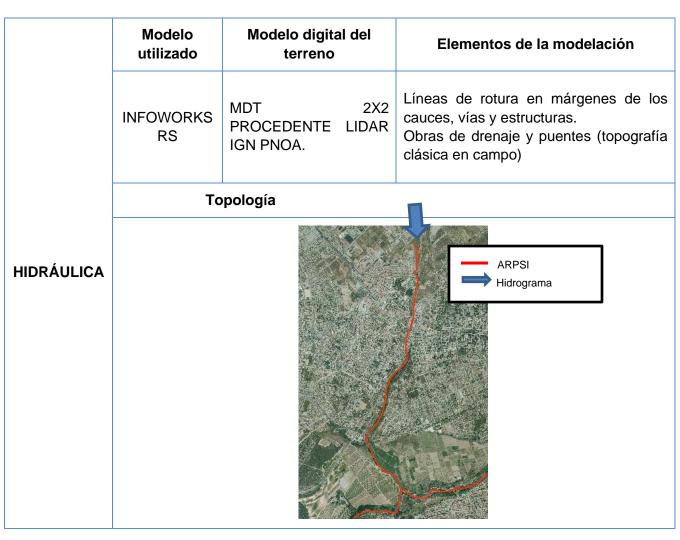
ES080-0025 – Quadro Santiago (Riu Sec, barrancos de la Parreta y Sigalero)

	Modelo utilizado			Caudale	es punta		
		T (años)	Seco (m3/s)	Sol (m3/s)	Sol tramo final (m3/s	Roja (m3/	Torreta (m3/s)
		10	100.6	16.5	12.6	18.2	12.9
		25	174.7	28.6	20.3	30.4	21.1
		50	245.3	39.9	27.4	41.8	28.7
		100	320.2	51.9	34.9	53.6	36.7
		500	538.3	86.7	55.9	87.7	59.3
				Ţ			
HIDROLOGÍA		T (años)	Pedrera (m3/s)	Palla (m3/s)	Diable (m3/s)	Migdia- Figueta (m3/s)	Magdalena (m3/s)
	HEC-HMS	10	8.7	8.1	10.4	22.9	17.4
	(USACE)	25	15.4	14.5	17.8	39.8	33.3
		50	21.7	20.4	24.6	55.5	48.9
		100	28.3	26.7	31.9	72.3	65.8
		500	47.9	45.4	53	120.9	115.9
			Intermedia			Intermed	
		T	Magdalena-	Ratlla	Parreta	parreta	_
		(años)	Ratlla	(m3/s)	(m3/s)	Sigalero	
		4.5	(m3/s)	2 -		(m3/s)	
		10	16.2	2.7	1.1	0.5	14.5
		25	27	7.4	4.8	1.6	20.1
		50	37	12.7	10.1	2.9	25.1
		100	47.4 77.1	19.1 39.6	17.1 42.6	4.5	33.2 65.1
		500	77.1	39.0	42.0	9.5	05.1

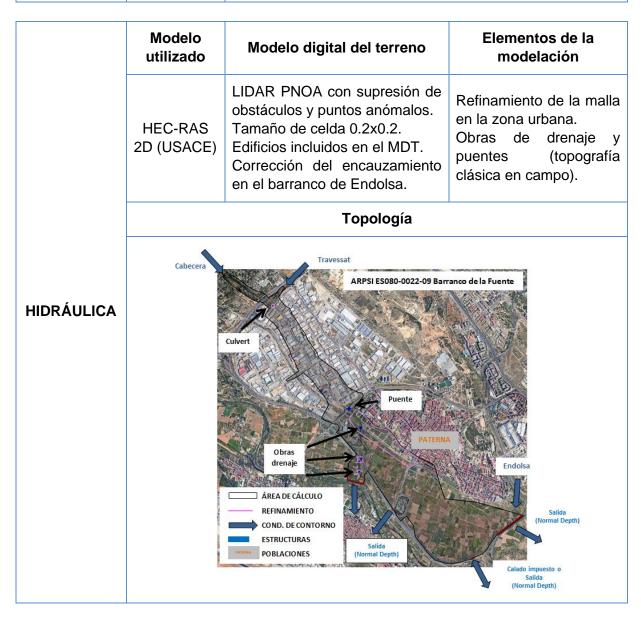
_	Modelo utilizado	Modelo digital del terreno	Elementos de la modelación
HIDRÁULICA	Infoworks ICM	LIDAR PNOA con supresión de obstáculos y puntos anómalos. Tamaño de celda 1x1.	Refinamientos de la malla en cauces y motas.

Líneas de rotura en márgenes de los cauces, vías y estructuras. Manzanas introducidas como islas y edificios como huecos. Obras de drenaje y puentes (topografía clásica campo) Topología Hidrograma entrada Hidrograma entrada Área del modelo (2D) Municipios

ARPSI	ES080-0021 – Barrancos de Carraixet, Palmaret Alto, Palmaret Bajo y Frares
-------	--


	Modelo utilizado		(Caudales pui	nta	
		T (años)	Frares (m3/s)	Carraixet (m3/s)	Palmaret Alto (m3/s)	Palmaret Bajo (m3/s)
HIDROLOGÍA		MCO	7.82	155.2	6	5
IIDROLOGIA		10	8.64	177	10	9
	TETIS (UPV)	25	11.2	276	14	11
		50	13.38	330	19	13
		100	19.39	340	29	21
		500	33.41	498	43	32

	Modelo utilizado	Modelo digital del terreno	Elementos de la modelación
HIDRÁULICA	HEC-HMS (USACE)	LIDAR PNOA con supresión de obstáculos y puntos anómalos. Tamaño de celda 1x1.	Refinamientos de la malla en cauces y motas. Líneas de rotura en márgenes de los cauces, vías y estructuras. Manzanas introducidas como islas y edificios como huecos. Obras de drenaje y puentes (topografía clásica en campo)
		Тор	pología
	(perímetro mag	jenta).	zona urbana (perímetro azul) y la zona rural rural son hidrogramas de salida de la zona


ARPSI ES080-0022_10 – Barranco del Mandor / Arroyo de la Granolera

	Modelo utilizado	Cauda	les punta	a
HIDROLOGÍA		T (años)	Caudal punta (m³/s)	a
MÉTODO RACIONAL 1er Ciclo	MCO	2		
	10	16		
	25	192		
		50	277	
		100	366	
		500	620	

ARPSI	ES080-0022_09 – Barranco de la Fuente (Paterna)

	Modelo utilizado		C	Caudales pun	ta	
,		T (años)	Fuente (m³/s)	Travessat (m³/s)	Endolsa (m³/s)	Turia (m)
HIDROLOGÍA		MCO	52.7	19.0	33.0	-
	HEC-HMS	10	74.0	26.3	46.6	-
	(USACE)	25	106.7	37.7	65.4	-
		50	121.9	42.9	74.7	-
		100	161.8	56.5	101.1	-
		500	235.0	81.2	140.1	6

ARPSI

ES080-0014 (Barrancos de Picassent, Realón y Garroferal) y ES080-0022 (Barrancos de Poyo, Saleta y Gallego)

	Modelo utilizado			Cauda	ales punta	
HIDROLOGÍA		T (años)	Poyo A7 (m3/s)	Saleta (m3/s)	Poyo Pista de Silla (m3/s)	Picassent- Beniparrell Pista de Silla (m3/s)
	TETIS (UPV)	MCO	112	6	226	5
	, ,	10	179	18	395	28
		25	212	28	430	63
		50	330	46	440	83
		100	458	79	530	132
		500	1200.0	170	1420.0	450.0

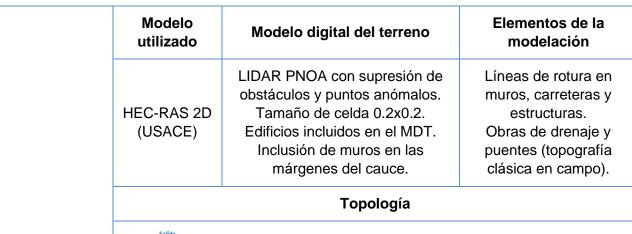
	Modelo utilizado	Modelo digital del terreno	Elementos de la modelación
	Infoworks ICM	LIDAR PNOA con supresión de obstáculos y puntos anómalos. Tamaño de celda 1x1.	Refinamientos de la malla en cauces y motas. Líneas de rotura en márgenes de los cauces, vías y estructuras. Manzanas introducidas como islas y edificios como huecos. Obras de drenaje y puentes (topografía clásica en campo)
			Topología
HIDRÁULICA	Cheste R	onguilla Manisi iba-roja de fruna Ouarride Poblet Alda niva	Modelo A7-Torrent Modelo Torrent-Albufera Red drenaje Carreteras

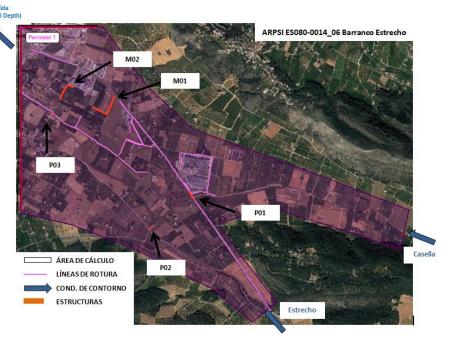
ARPSI ES080-0014_13 – Barranco del Tramusser

	Modelo utilizado	Cauda	les punta
HIDROLOGÍA		T (años)	Caudal punta (m³/s)
HEC-HMS (USACE) 1er Ciclo		MCO	11.6
	(USACE) 1er	10	39.9
	Ciclo	25	97.8
		50	135.1
		100	193.1
		500	367.4

Modelo utilizado	Modelo digital del terreno	Elemento modela		
HEC-RAS 2D (USACE)	LIDAR PNOA con supresión de obstáculos y puntos anómalos. Tamaño de celda 1x1. Edificios incluidos en el MDT. Corrección del encauzamiento.	Líneas de márgenes, estructuras. Obras de drena (topografía campo).	rotura vías aje y puer clásica	en y ntes en

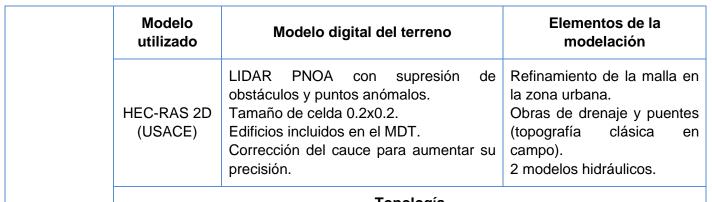
Topología


HIDRÁULICA


/	Λ.		251	
	٠ч.	₹ F		

ES080-0014_20 - Barranco del Estret (Alzira)

	Modelo utilizado	(Caudales p	unta
	Determinación	T (años)	Estret (m³/s)	Casella (m³/s)
HIDROLOGÍA	de los niveles	MCO	34.0	21.0
	máximos admisibles en	10	57.5	35.2
	el río Júcar	25	99.6	60.7
	(CEDEX,	50	122.3	74.5
	2002)	100	186.3	113.2
	/	500	335.6	203.3



HIDRÁULICA

ARPSI ES080-0014_10 – Barranco de Barcheta (Pobla Llarga)

_	Modelo utilizado		Caudales punta								
_		T (años)	R6970 (m3/s)	W7450 (m3/s)	W7560 (m3/s)	W7670 (m3/s)	W7800 (m3/s)	W7780 (m3/s)			
HIDROLOGÍA		MCO	197.5	32.3	142.6	86.2	38.6	55.1			
	HEC-HMS	10	256.6	43.9	186.9	109.7	50.0	73.5			
	(USACE)	25	375.1	68.1	275.8	155.9	72.6	111.1			
		50	478.1	89.5	353.0	195.5	92.1	144.0			
		100	582.9	111.5	431.5	235.3	111.8	177.7			
		500	861.4	170.9	639.5	339.6	163.9	267.7			

Topología

HIDRÁULICA

ARPSI

ES080-0014F - Río Júcar*

El mapa de calados máximos del río Júcar se ha obtenido de los siguientes estudios:

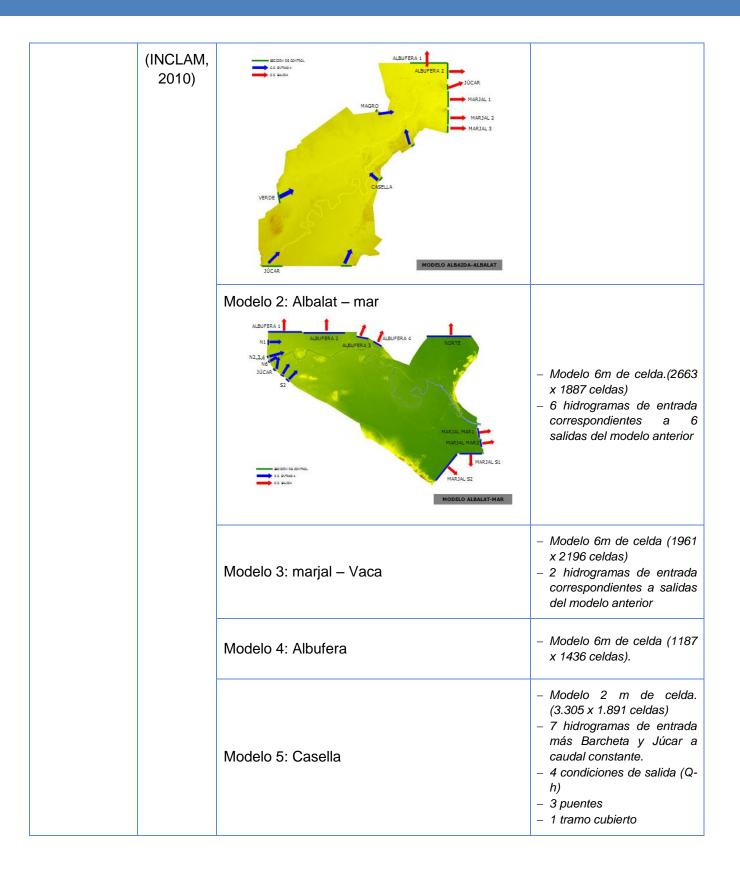
- Para T = 10 años se ha utilizado el modelo GISPLANA del CEDEX
- Para T = 100 y 500 años se han utilizado los modelos hidráulicos elaborados por INCLAM en el marco de dos contratos para la Confederación Hidrográfica del Júcar:
 - Proyecto de construcción del Acondicionamiento del río Júcar entre Carcaixent y la Autopista A-7 (Valencia) (2011)
 - Proyecto de construcción de mejora del drenaje del Marjal del Sur del Río Júcar. T.M. Alcira, Cullera y otros (Valencia) (2011)

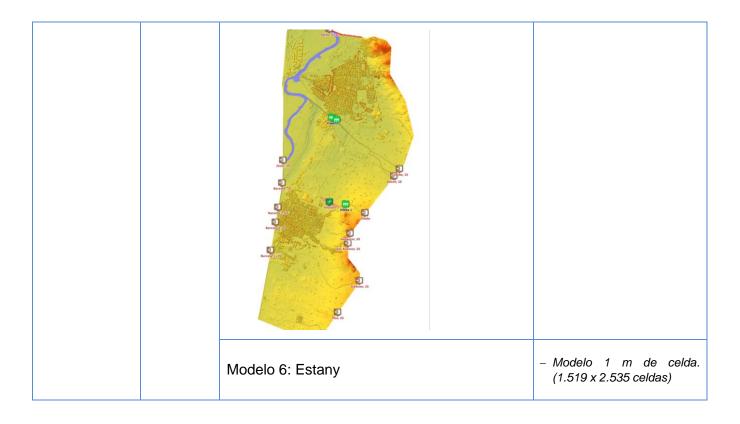
La hidrología procede del estudio del Cedex Estudio y dimensionamiento de actuaciones estructurales de defensa y zonificación de la llanura de inundación del río Júcar (2006) con la excepción de:

- el río Canyoles, cuya hidrología se modelizó con un nuevo HMS específico para los 2 proyectos de construcción y con las hipótesis de cálculo del estudio de detalle, en situación actual, que en paralelo estaba elaborando la CHJ: Estudio de viabilidad técnica y medioambiental y caracterización de las soluciones de la presa de Montesa TT.MM. de Montesa y Vallada (provincia de Valencia) (2008).
- El modelo 05Casella donde los caudales de las distintas ramblas (cuencas del Barcheta y del Casella)se calcularon con HMS.

Modelo utilizado	Caudales punta									
	M	odelo Nº 1 All	paida-Albalat (caudales en m³	/s)					
OLOGÍA	Entrada	T =25	T = 50	T =100	T =250	T =500				
	Júcar con Sellent y Albaida	894	1.549 2.179 3.189	3.189	3.906					
CEDEX	Verde	214	320	502	772	1.015				
HMS	Magro	273	410	582	885	1.119				
	Murta	36	54	75	110	137				
	Casella y afluentes	120	180	252	363	462				
	Barxeta 189 285 399 581									
	utilizado CEDEX	Lilizado MEntrada Júcar con Sellent y Albaida Verde HMS Magro Murta Casella y afluentes	CEDEX HMS Modelo Nº 1 All Entrada T = 25 Júcar con Sellent y Albaida 894 Verde 214 Magro 273 Murta 36 Casella y afluentes 120	Caudales p Modelo № 1 Albaida-Albalat (Entrada T = 25 T = 50 Júcar con Sellent y Albaida 894 1.549 Verde 214 320 Magro 273 410 Murta 36 54 Casella y afluentes 120 180	Caudales punta Modelo № 1 Albaida-Albalat (caudales en m³ Entrada T = 25 T = 50 T = 100 Júcar con Sellent y Albaida 894 1.549 2.179 Verde 214 320 502 Magro 273 410 582 Murta 36 54 75 Casella y afluentes 120 180 252	Caudales punta Modelo № 1 Albaida-Albalat (caudales en m³/s) Entrada T = 25 T = 50 T = 100 T = 250 Júcar con Sellent y Albaida 894 1.549 2.179 3.189 Verde 214 320 502 772 Magro 273 410 582 885 Murta 36 54 75 110 Casella y afluentes 120 180 252 363				

Modelo №2 Albalat-Mar (caudales en m³/s)									
Entrada	T =25	T = 50	T =100	T =250	T =500				
Entrada 1 (AP-7)	0	21	64	181	313				
Entrada 2 (AP-7)	0	29	46	159	227				
Entrada 3 (AP-7)	0	22	52	148	174				
Entrada 4 (AP-7)	0	0	51	132	151				
Júcar	828	950	1.143	1.438	1.693				
Marjal 1	10	86	278	585	758				
Marjal 2	165	335	575	803	920				


Modelo Nº 3 Albufera (caudales en m³/s)											
Entrada	T =25	T = 25 T = 50 T = 100 T = 250 T = 500									
Entrada 1 (AP-7)	0	21	64	171	313						
Entrada 2 (AP-7)	0	29	46	149	227						
Entrada 3 (AP-7)	0	22	52	138	174						
Entrada 4 (AP-7)	0	0	51	132	151						
A través de la CV-515	0	107	209	347	474						
Resto de entradas	0	0	161	282	411						

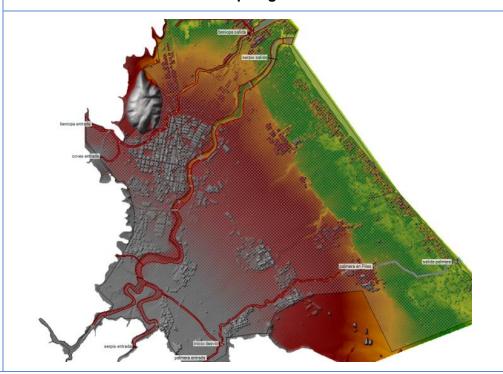

Modelo № 5 Casella (caudales en m³/s)										
Entrada	T =25	T = 50	T =100	T =250	T =500					
Pau	37	53	72	93	111					
Gaianes	32	46	62	82	97					
San Antonio	8	11	15	20	23.2					
Venancio	10	15	20	26	31					
Vilella	19	30	44	60	84					
Estret	135	193	261	339	456					
Casella	62	94	132	177	246					

Modelo Nº 4 Marjal-Vaca (caudales en m³/s)									
Entrada T = 25 T = 50 T = 100 T = 250 T = 500									
A través de la N-332	66	458	893	1.417	1.809				
Desde M. Der. de Júcar	53	67	69	70	70				

Modelo Nº 6 Estany (caudales en m³/s)										
Entrada T = 25 T = 50 T = 100 T = 250 T = 500										
Entrada al Estany	Entrada al Estany 0 21 64 171 313									

	Modelo utilizado	Modelo digital del terreno	Elementos de la modelación
HIDRÁULICA	GUAD 2D	Modelo 1: Albaida - Albalat	 Modelo de terreno 6m de celda (2159 x 2317 celdas) 6 hidrogramas de entrada

ARPSI ES080-12 – Rios Serpis y Vernissa, barrancos de Beniopa y Piles*

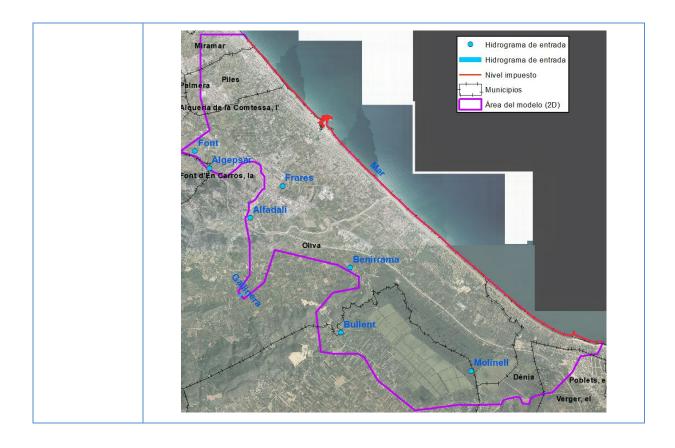

	Modelo utilizado			(Cauda	les pun	ta			
			T (año	Tra (s) Pa	nissa amo ilma 1 ³ /s)	Ga	ma de Indía n³/s)		rpis ³/s)	Piles o Palmera (m³/s)
		MC	0	84		29	1	14	26	
		10	1	37		46	2	19	42	
		25		279		81	50	64	80	
	50		13		121		23	114		
	100		680		159		20	154		
HIDROLOGÍA	Proyectos constructivos de Acuamed	500	T	Camí de Xa	vell	274 Cove		05 Ben	iopa	
			(años)	Real Palı (m³	ma	(m³/			³ /s)	
			MCO	5		8		4	6	
			10	8		13			4	
			25	16		26			42	
			50	22		36			04	
			100	33		48			71	
			500	49	9	81		47	71	

HIDRÁULICA	Modelo utilizado	Modelo digital del terreno	Elementos de la modelación
------------	---------------------	----------------------------	-------------------------------

HEC-RAS 2D (USACE) LIDAR PNOA con supresión de obstáculos y puntos anómalos. Tamaño de celda 1x1. Edificios incluidos en el MDT. Ampliación en una zona puntual.

Refinamiento de la malla en cauces.
Líneas de rotura en márgenes, vías, estructuras y edificios.
Obras de drenaje y puentes (topografía clásica en campo).

Topología



ARPSI

ES080-0011 – Barranco de la Font, rambla Gallinera, río Alfadalí, ríos Vedat, Revolta y Roller

	Modelo utilizado	Caudales punta				
	Proyectos constructivos	T (años)	Fonts (m³/s)	Algepsar (m³/s)	Frares (m³/s)	Alfadalí (m³/s)
	de Acuamed.	MCO	31.5	3.4	2.2	10.8
	Hidrología	10	38.9	4.2	2.7	16.3
	del Modelo	25	54.3	6.4	4.1	23.1
	Hidráulico	50	75.1	8.4	5.1	29.2
	bidimensional	100	107.5	10.9	7.3	38.3
HIDROLOGÍA	de las zonas	500	186.1	23.1	15.7	92.7
	inundables de los cauces					
	del río	Т	Gallinera	Benirrama	Bullent	Molinell
	Serpis,	(años)	(m³/s)	(m³/s)	(m³/s)	(m³/s)
	Rambla de la Gallinera, Río	MCO	123.2	5.4	42.0	29.9
	Bullent y Río	10	199.0	10.4	70.9	56.7
	Molinell	25	283.1	15.8	102.3	84.4
	(Acuamed	50	359.0	21.0	131.9	110.3
	2010)	100	462.6	28.3	172.8	146.3
	, ,	500	1024.9	62.5	398.8	317.6

	Modelo utilizado	Modelo digital del terreno	Elementos de la modelación		
HIDRÁULICA	Infoworks ICM	LIDAR PNOA con supresión de obstáculos y puntos anómalos. Tamaño de celda 1x1.	Refinamientos de la malla en cauces y motas. Líneas de rotura en márgenes de los cauces, vías y estructuras. Manzanas introducidas como islas y edificios como huecos. Obras de drenaje y puentes (topografía clásica en campo)		
	Topología				

ARPSI ES080-0002_02 - Barranco San Antón Modelo Caudales punta utilizado Caudal Т punta (años) (m³/s) **HIDROLOGÍA** MÉTODO MCO 8 **RACIONAL** 12 10 1er Ciclo 25 26 50 38 100 51 92 500 Modelo Modelo digital del Elementos de la modelación utilizado terreno Líneas de rotura en márgenes de los

MDT 2X2 PROCEDENTE

LIDAR IGN PNOA.

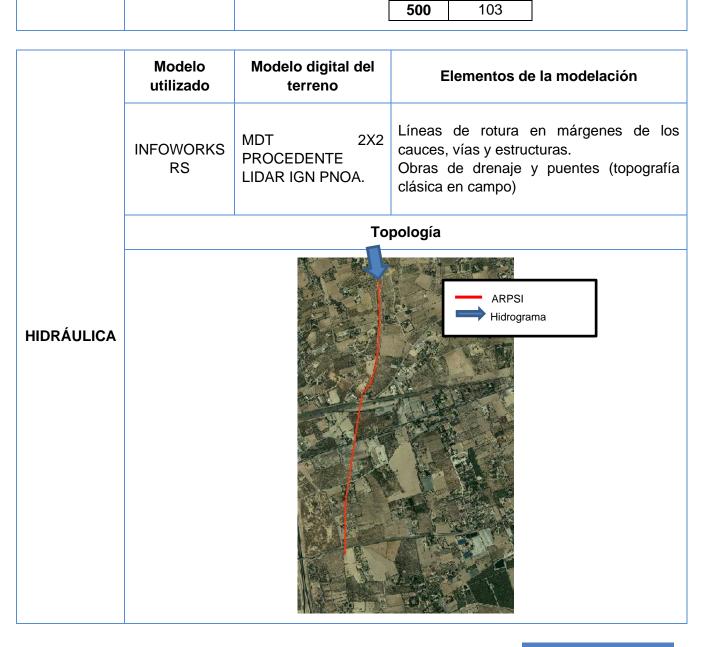
Topología

HIDRÁULICA

Obras de drenaje y puentes (topografía

cauces, vías y estructuras.

clásica en campo)


INFOWORKS

RS

ARPSI	ES080-0002_03 – Barranco del Grifo		
Modelo utilizado		Caudales punta	
HIDROLOGÍA	MÉTODO RACIONAL 1er Ciclo	T Caudal punta (m³/s)	
		MCO 6	
		10 11	
		25 27	
		50 38	

100

54

