ESTUDIO DE UTILIZACIÓN CONJUNTA DE LOS RECURSOS HÍDRICOS SUPERFICIALES Y SUBTERRÁNEOS EN LAS CUENCAS MEDIA Y BAJA DE LOS RÍOS JÚCAR Y TURIA

DOCUMENTO DE SÍNTESIS

SEPTIEMBRE DE 2003
Índice

1 INTRODUCCIÓN... 1
2 ANTECEDENTES.. 5
3 LOS RECURSOS HÍDRICOS DE LAS CUENCAS ... 17
4 USOS DEL AGUA EN LAS CUENCAS... 87
5 ASPECTOS MEDIOAMBIENTALES... 125
6 GESTIÓN DE LAS CUENCAS ... 141
7 MODELACIÓN DE LA GESTIÓN DE LAS CUENCAS... 155
8 ANÁLISIS Y DIAGNÓSTICO DE LA SITUACIÓN ACTUAL Y DE LAS PREVISTAS EN EL PHC Y PHN ... 193
9 ANÁLISIS PRÁCTICO DE POSIBLES ESTRATEGIAS DE RESPUESTA............. 247
10 RESUMEN Y CONCLUSIONES... 279
11 REFERENCIAS .. 313
Índice detallado

1 INTRODUCCIÓN..1

2 ANTECEDENTES..5

3 LOS RECURSOS HÍDRICOS DE LAS CUENCAS ...17
 3.1 Recursos superficiales ..20
 3.1.1 Aportaciones naturales ...20
 3.1.2 Retornos de agua existentes en los sistemas Júcar y Turia70
 3.1.3 Reutilización de aguas residuales en Júcar y Turia ...74
 3.2 Recursos subterráneos ..78

4 USOS DEL AGUA EN LAS CUENCAS ..87
 4.1 Usos sectoriales ..89
 4.1.1 Unidades de demanda urbana UDUs ...90
 4.1.2 Unidades de demanda agraria UDAs ...93
 4.1.3 Unidades de demanda industrial UDIs ..99
 4.1.4 Resumen ..101
 4.2 Suministros superficiales en las cuencas de los ríos Júcar y Turia102
 4.2.1 Suministros a las demandas del río Turia ..102
 4.2.2 Suministros a las demandas del río Júcar ...109

5 ASPECTOS MEDIOAMBIENTALES ..125
 5.1 Espacios naturales protegidos en el ámbito geográfico del estudio127
 5.1.1 Espacios protegidos por disposiciones internacionales ...127
 5.1.2 Espacios protegidos por la normativa de ámbito europeo (CEE)129
 5.1.3 Espacios protegidos dentro del ámbito estatal español ..132
 5.2 Caudales ecológicos ..133
 5.2.1 Sistema Turia ..135
 5.2.2 Sistema Júcar ..137

6 GESTIÓN DE LAS CUENCAS ..141
 6.1 Sistemas de explotación ..143
 6.2 Conexiones entre sistemas ..148
 6.3 Integración de acuíferos ..150
 6.4 Utilización conjunta de aguas superficiales y subterráneas ..152

7 MODELACIÓN DE LA GESTIÓN DE LAS CUENCAS ...155
7.1 Esquemas de simulación de la gestión de los ríos Júcar y Turia .. 158
 7.1.1 Esquema del río Turia ... 158
 7.1.2 Esquema del río Júcar ... 163
7.2 Modelos de simulación hidrodinámica de los acuíferos ... 169
 7.2.1 Modelo de los acuíferos del Turia medio 170
 7.2.2 Modelo matemático distribuido de la Plana Sur 175
7.3 Calibración y Validación integrada de los modelos Modflow y de retornos agregado 189
 7.3.1 Contraste entre ambos modelos .. 189
8 ANÁLISIS Y DIAGNÓSTICO DE LA SITUACIÓN ACTUAL Y DE LAS PREVISTAS EN EL PHC Y PHN ... 193
 8.1 Simulación de la situación actual en condiciones ordinarias 195
 8.1.1 Sistema Turia ... 195
 8.1.2 Sistema Júcar ... 207
 8.2 Simulación con los modelos desarrollados en situaciones de sequía 239
9 ANÁLISIS PRÁCTICO DE POSIBLES ESTRATEGIAS DE RESPUESTA 247
 9.1 Estudio de la electrificación de los pozos de sequía en el ámbito de la zona regable
 de la Acequia Real del Júcar .. 251
 9.2 Estudio sobre regadíos del río Magro .. 261
 9.3 Estudio del abastecimiento de agua potable a la Ribera 270
 9.4 Estudio de utilización conjunta de los recursos hídricos Superficiales y Subterráneos
 de l’Horta Nord y Camp del Turia .. 274
10 RESUMEN Y CONCLUSIONES .. 279
 10.1 Recursos ... 281
 10.1.1 Recursos superficiales .. 281
 10.1.2 Recursos subterráneos .. 283
 10.1.3 Otros recursos .. 285
 10.2 Usos del agua .. 286
 10.2.1 Usos sectoriales .. 286
 10.2.2 Usos medioambientales .. 289
 10.3 Gestión de las cuencas y su modelación ... 289
 10.3.1 Sistemas de explotación y reglas de gestión 289
 10.3.2 Modelación de la gestión ... 291
 10.3.3 Modelación hidrodinámica de acuíferos 293
10.4 Análisis y diagnóstico de la situación actual y de las previstas en el PHC y PHN.. 296
10.5 Análisis práctico de algunas estrategias posibles de respuesta .. 305
10.5.1 Estudio de electrificación de los pozos de sequía de la Acequia Real del Júcar. 305
10.5.2 Estudio de los regadíos del río Magro .. 306
10.5.3 Estudio del abastecimiento de agua potable a la Ribera ... 309
10.5.4 Estudio de utilización conjunta en l’Horta Nord y Camp del Turia ... 310
11 REFERENCIAS .. 313
ANEJOS

GRUPO A. APORTACIONES DEL SISTEMA

A1. APORTACIONES NATURALES EN LA CUENCA DEL RÍO TURIA

A2. APORTACIONES NATURALES EN LA CUENCA DEL RÍO JÚCAR
 A2a Aportaciones en el río Júcar (metodología utilizada por la Oficina de Planificación Hidrológica hasta el año 1999/00)
 A2b Análisis y validación de los datos hidrológicos del sistema Júcar hasta el embalse de Tous.
 A2c Evaluación de las aportaciones naturales en el río Júcar (series obtenidas en el presente trabajo 1940/41-2000/01).
 A2d Contraste del modelo pluricelular del acuífero de la Mancha Oriental con los datos piezométricos del río Júcar.

A3. MODELO DE APORTACIONES EN LA CUENCA DEL RÍO JÚCAR, AGUAS ABAJO DEL EMBALSE DE TOUS

A4. MODELO DE TRANSFERENCIAS DE AGUAS SUBTERRÁNEAS EN LA CUENCA MEDIA DEL RÍO TURIA

A5. ANÁLISIS ESTADÍSTICO DE LOS CAUDALES CIRCULANTES EN RÉGIMEN NATURAL EN EL EMBALSE DE TOUS

A6. VISITA DE CAMPO AL RÍO TURIA
GRUPO B. MODELOS ESTOCÁSTICOS DE APORTACIONES

B1. MODELO DE APORTACIONES DEL RÍO TURIA

B2. MODELO DE APORTACIONES DEL RÍO JÚCAR

 B2a Modelo estocástico de aportaciones del río Júcar (serie OPH 1940/41-1999/00))

 B2b Modelo estocástico de aportaciones del río Júcar (serie OPH periodo 1980/81 1999/00)

 B2c Modelo estocástico de aportaciones del río Júcar (serie obtenida en el presente trabajo 1940/41 – 2000/01).

GRUPO C. DEMANDAS DEL SISTEMA

C1. DEMANDAS EN LA CUENCA DEL RÍO TURIA

C2. DEMANDAS EN LA CUENCA DEL RÍO JÚCAR

GRUPO D. ANÁLISIS DE ESTRATEGIAS DE UTILIZACIÓN CONJUNTA

D1. ESTUDIO DEL ABASTECIMIENTO DE AGUA POTABLE A LA RIBERA

D2. ESTUDIO PARA LA ELECTRIFICACIÓN DE LOS POZOS DE SEQUÍA EN EL ÁMBITO DE LA ZONA REGABLE DE LA ACEQUIA REAL DEL JÚCAR

D3. RESULTADOS DE LA CAMPAÑA DE EXPLOTACIÓN DE 5 POZOS ELECTRIFICADOS DE LA ACEQUIA REAL DEL JÚCAR EN MARZO DEL 2002

D4. ESTUDIO DE REUTILIZACIÓN DE AGUAS RESIDUALES DEPURADAS.

D5. ESTUDIO SOBRE REGADÍOS DEL RÍO MAGRO

D6. ESTUDIO DE UTILIZACIÓN CONJUNTA DE LOS RECURSOS HÍDRICOS SUPERFICIALES Y SUBTERRÁNEOS DE L’HORTA NORD Y CAMP DEL TURIA
GRUPO E. MODELOS DE SIMULACIÓN DE LA GESTIÓN

E1. MODELO DE SIMULACIÓN DEL SISTEMA TURIA
E2. MODELO DE SIMULACIÓN DEL SISTEMA JÚCAR

GRUPO F. SISTEMAS DE AGUAS SUBTERRÁNEAS

F1. MODELO MATEMÁTICO DISTRIBUIDO DEL ACUÍFERO DE LA PLANA SUR
F2. CAMPAÑA DE MEDICIÓN DEL NIVEL FREÁTICO DE LA PLANA SUR
F3. MODELO DE LOS ACUÍFEROS INTERIORES DEL RÍO TURIA
F4. CONTRASTE DEL MODELO DE APORTACIONES DEL RÍO JÚCAR AGUAS ABAJO DEL EMBALSE DE TOUS CON EL MODELO MATEMÁTICO DISTRIBUIDO DE LA PLANA DE VALENCIA SUR
F5. SIMULACIÓN DE DISTINTAS ALTERNATIVAS DE GESTIÓN MEDIANTE EL MODELO MODFLOW DEL ACUÍFERO DE LA PLANA SUR.

GRUPO G. SIMULACIÓN DE LA GESTIÓN DE LOS SISTEMAS DE RECURSOS

G1. SIMULACIÓN DE LOS SISTEMAS EN SITUACIONES ORDINARIAS
 G1a. SIMULACIÓN DEL SISTEMA TURIA
 G1a1. Eco de datos del modelo Turia
 G1a2. Archivo de resultados resumen modelo Turia
 G1b. SIMULACIÓN DEL SISTEMA JÚCAR
 G1b1. Eco de datos del modelo Júcar, alternativa asignación PHJ.
 G1b2. Archivo de resultados resumen modelo Júcar, alternativa asignación PHJ.
 G1b3. Resumen de resultados de las alternativas consideradas.
G2. SIMULACIÓN DE LA GESTIÓN EN SITUACIONES DE SEQUÍA

G2b. SIMULACIÓN DEL SISTEMA JÚCAR

G2b1. Descripción y aplicación de la metodología propuesta.

G2b2. Resultados de las simulaciones mensuales.
1 INTRODUCCIÓN
El presente estudio se enmarca dentro del contrato de “CONSULTORÍA Y ASISTENCIA PARA EL ESTUDIO DE UTILIZACIÓN CONJUNTA DE LOS RECURSOS HÍDRICOS SUPERFICIALES Y SUBTERRÁNEOS DE LAS CUENCAS MEDIA Y BAJA DE LOS RÍOS JÚCAR Y TURIA” formalizado, tras el oportuno Concurso de adjudicación, el 23 de Noviembre de 2000 entre la D.G.O.H. y C.A. del Ministerio de Medio Ambiente y la empresa MS INGENIEROS S.L., el cual se desarrolla bajo la dirección de la OFICINA DE PLANIFICACIÓN HIDROLÓGICA (en adelante OPH) de la CONFEDERACIÓN HIDROGRÁFICA DEL JÚCAR (en adelante CHJ).

En este documento se resumen los principales resultados obtenidos durante la realización de este trabajo, y además, se constituye en una guía rápida para localizar la información detallada que se adjunta en los anejos de este informe.

Uno de los rasgos más característicos de un sistema hidráulico bien constituido es, sin ningún género de dudas, la utilización de todas las fuentes posibles de recursos, procurando su empleo en aquellos casos para los que existan evidentes ventajas comparativas.

Dentro de los trabajos de planificación hidrológica, el uso conjunto de los recursos hídricos superficiales y subterráneos presenta un gran valor estratégico que cobra especial relevancia en épocas de sequía.

Actualmente el uso conjunto ha llevado a una elevada garantía a los sistemas que lo utilizan como por ejemplo el Canal Júcar-Turia (en su margen derecha) o Canal Campo del Turia.
2 ANTECEDENTES
La revisión de antecedentes se ha agrupado de la siguiente forma:

1. Estudios de evaluación de los recursos naturales a partir de datos de aforos o mediante la aplicación de modelos lluvia escorrentía y de la gestión de los recursos de la cuenca.

2. Principales estudios de modelación hidrogeológica realizados en la cuenca

3. Estudios sobre el análisis de las demandas existentes en la cuenca.

Figura 1. Sistemas de explotación Júcar y Turia (fuente OPH de CHJ)

En la memoria del presente estudio se enumeran los estudios previos existentes sobre la estimación de recursos, demandas y modelación de los sistemas Júcar y Turia, mostrándose seguidamente los de mayor relevancia para este estudio.
1. Estudios de recursos y de modelación de la gestión

Los esquemas de simulación incluyen los embalses de Alarcón, Contreras, Tous, Benageber (antiguo Generalísimo) y Loriguilla. Las demandas en la Ribera del Júcar aparecen desagregadas. Incluye el subsistema subterráneo, con el acuífero de la Mancha Oriental.

Estudio de necesidades de agua y estudio de regulación:

El estudio de necesidades de agua se refiere a la zona del Vinalopó y las Marinas, tanto a demandas agrícolas, como a demandas urbanas.

El estudio de regulación se realiza con un modelo confeccionado con SIM-V. El modelo incluye un esquema que tiene 9 embalses, y contiene de forma detallada las demandas de la Ribera del Júcar, así como las del Turia.

Las aportaciones en Tous incluyen el río Escalona, y se dividen posteriormente en Molinar (que en realidad es Embarcaderos), Cortes, y Tous, con factores de reparto de 0.554, 0.233, y 0.213 respectivamente. Las aportaciones en Molinar son las que soportan, en los casos en que ésta se considera, la detracción de 250 hm³ atribuida a los bombeos para los riegos de Albacete.

Tiene un modelo realizado con SIMV que incluye un nivel de detalle inferior al JV-1988, pero las series de aportaciones van desde 1940-1986. El esquema tiene los embalses de Alarcón, Contreras, Benagéber+Loriguilla, Embarcaderos, Cortes, Naranjero y Tous, y un embalse en el Vinalopó.

Tiene series de aportaciones en Alarcón (los valores en los años coincidentes son iguales a las del estudio JV-1988), Contreras (idem.), Benagéber+Loriguilla, y Tous (dividido en Molinar, Embarcaderos, Naranjero y Tous).

Se trata de una revisión del estudio anterior.

JT-1997 (DIHMA, 1997), “Modelos de evaluación y gestión de recursos hidráulicos del Júcar, incluyendo el análisis del comportamiento del acuífero de la Plana” realizado por el Departamento de Ingeniería Hidráulica y Medio Ambiente de la Universidad Politécnica de Valencia (en adelante DIHMA) en convenio con INCISA para la DGOH.

Figura 2. Esquema de simulación de los sistemas Júcar y Turia utilizado en el estudio DIHMA, 1997.

Se realiza una nueva revisión y actualización de los recursos de la cuenca del río Júcar y se analizan las posibilidades de aprovechamiento de los recursos mediante el modelo de optimización de la gestión OPTIGES. El esquema empleado se muestra en la Figura 3.

Se analizan y actualizan los recursos del río Júcar y mediante el modelo de simulación de la gestión SIMGES se determinan las posibilidades de transferencias de recursos del sistema Júcar al sistema Vinalopó. El esquema de simulación empleado se muestra en la Figura 4.

Analiza las depuradoras y zonas de riegos existentes en el área metropolitana de Valencia, definiendo las actuaciones necesarias para la reutilización de las residuales en las distintas zonas de riego y en la Albufera de Valencia.

En este trabajo se establece la metodología para la actualización anual de algunos de los principales contenidos del Plan Hidrológico, además se actualiza toda la información hasta el año 1999/00. Entre otros se actualizan los recursos mediante el modelo lluvia escorrentía SIMPA (Sistema Integrado de Modelación Precipitación Aportación, desarrollado por el Centro de Estudios Hidrográficos del CEDEX) y la restitución de aportaciones a régimen natural a partir de los datos de aforos; se actualizan las demandas existentes en la cuenca así como los suministros superficiales realizados; y se actualizan los datos de balances existentes en las unidades hidrogeológicas; y también se analiza el estado de cumplimiento de los caudales ecológicos, los objetivos de calidad en los distintos tramos de río, etc..

En él se realiza un nuevo análisis de las aportaciones y demandas del sistema Júcar. Además, se pone en funcionamiento un modelo de simulación de la gestión basado en riesgo para el río Júcar (modelo SIMRISK), el cual sirve de apoyo a la toma de decisiones de las Comisiones de Desembalse que realiza el Área de Explotación todos los meses. El esquema utilizado se muestra en la Figura 5.
2. Principales estudios de modelación hidrogeológica realizados en la cuenca

Consiste en un modelo realizado con el programa de Pricket y Lonquist (Prickett et al. 1971), y que abarca el área geográfica desde el delta del Palancia hasta la desembocadura del río Júcar comprendiendo, las Planas Norte y Sur y parte de los bordes mesozoicos que las limitan.

En este estudio la extensión del modelo que se confeccionó se corresponde con el acuífero de la Plana de Valencia. El objeto del modelo era la simulación de diversas alternativas de gestión del acuífero 51 basadas en diversas posibilidades de recarga artificial con aguas no reguladas del río Júcar, en invierno, y su explotación posterior en época de riego.

Modelo hidrogeológico que abarca la unidad hidrogeológica 8.26 (Plana Sur). El objetivo de este estudio fue el análisis de las posibilidades de trasvase al Vinalopó y la respuesta del acuífero ante distintas reglas de operación del embalse de Tous.

Es un estudio basado en el análisis de aguas subterráneas en el acuífero de la Mancha Oriental. Contiene un modelo de flujo subterráneo del acuífero de la Mancha Oriental en diferencias finitas y los datos de su explotación histórica. Además se obtienen las aportaciones en régimen natural en el embalse de Molinar para el periodo 1946/47-1990/91, analizándose la reducción histórica de dichas aportaciones. Se utilizará como base para la modelación del acuífero en el modelo global del sistema del presente estudio.
ACU-PL, 1997 (CHJ, 1997), “Estudio del plan general de adecuación del sistema de explotación de los aprovechamientos tradicionales del Júcar” de la Confederación Hidrográfica del Júcar, realizado en 1.997,

En este estudio se puso a punto un nuevo modelo que incluía la misma zona que la del estudio del IGME (1.986), es decir el acuífero de la Plana de Valencia. Este estudio realiza un análisis hidrogeológico del acuífero mediante el modelo de Prickett.

3. Estudios sobre el análisis de demandas existentes en la cuenca

Realiza estimaciones de necesidades hídricas de cultivos por tres métodos diferentes, y en base a ellas, y a consideraciones de eficiencia de riegos, define de una forma muy detallada las demandas teóricas de riegos, distribuidas por municipios y comarcas dentro de una cuenca.

J-2002b (OPH, 2002b), “Análisis y revisión de los principales suministros superficiales del río Júcar” Oficina de Planificación Hidrológica (OPH) de la Confederación Hidrográfica del Júcar CHJ.

En este estudio se realiza el análisis de la evolución de los suministros principales superficiales a las demandas existentes en la cuenca, de forma que se conocen de forma detallada los usos reales existentes en la cuenca. Actualiza la información hasta el año 2000/01.

El creciente aprovechamiento de las aguas de los sistemas Júcar y Turia, así como la aparición de nuevos usuarios en el sistema Júcar, junto con los recientes episodios de sequía acaecidos, hacen necesaria la realización de un estudio que actualice la información existente de ambos sistemas (en cuanto a recursos, demandas, etc…), y realice el diagnóstico de la situación actual de dichos sistemas, así como sus perspectivas de futuro, teniendo en cuenta otras fuentes de origen del agua como: la reutilización de aguas residuales depuradas, la utilización conjunta de aguas superficiales y subterráneas, etc…
3 LOS RECURSOS HÍDRICOS DE LAS CUENCAS
Los sistemas de explotación Turia y Júcar tienen una superficie total de 29.291,51 km\(^2\), la mayor altitud se alcanza en el nacimiento del río Alfambra a 2.024 m.s.n.m.

La población total en la zona asciende a 2.403.546 habitantes según datos del año 2000 del Instituto Nacional de Estadística. La superficie total regada es de 243.521 has. A continuación se puede ver en el mapa la ubicación de estas dos cuencas.

Figura 6. Mapa de situación de las cuencas del Júcar y del Turia
3.1 RECURSOS SUPERFICIALES

La evaluación de los recursos superficiales en régimen natural es una tarea compleja. Debe apoyarse en los datos registrados en las estaciones de aforo, que en la mayoría de ocasiones miden regímenes afectados.

La restitución a régimen natural de esos datos, aunque teóricamente es sencilla, presenta en la práctica grandes dificultades, pues no es habitual disponer de suficiente información sobre la evolución temporal de los caudales detrificados por los ríos, de los bombeos en los acuíferos, de los retornos de riegos o abastecimientos, o de la gestión de la infraestructura hidráulica.

En el ámbito de este estudio se analizan las metodologías de restitución empleadas actualmente en los ríos Júcar y Turia, revisando y actualizando aquellas series en las que se ha considerado oportuno introducir algunas mejoras.

También se han analizado los retornos superficiales de los sistemas así como la posible incorporación al sistema de recursos superficiales procedentes de las depuradoras existentes.

3.1.1 Aportaciones naturales

Para la evaluación de los recursos superficiales en los ríos Júcar y Turia se ha llevado a cabo la restitución de las aportaciones registradas en embalses y aforos a régimen natural, además de contrastarlo con los resultados obtenidos por el modelo de simulación lluvia-escorrentía SIMPA (Sistema de modelación precipitación-aportación).

Con carácter general para los dos sistemas se ha realizado una revisión y actualización de las series de aportaciones que se están utilizando en la actualidad. Además, en ambos sistemas se comparan estas series con la estimación de las mismas con el modelo de precipitación - escorrentía SIMPA. La utilización de ambas metodologías ha permitido mejorar de forma considerable la estimación de los recursos en ambas cuencas, permitiendo justificar determinados flujos o afecciones antropicas existentes en el régimen natural.

En el caso del Sistema Turia, se ha realizado una nueva estimación de recursos naturales en diferentes puntos de la cuenca, concretamente en el embalse de Arquillo de San Blas en la Provincia de Teruel. También se ha analizado la posible existencia de una transferencia de aguas subterráneas en el tramo intermedio de la cuenca, lo cual parece
confirmarse con los estudios de detalle sobre los niveles piezométricos realizados en los últimos años. Es decir, que existe una transferencia subterránea de los acuíferos situados en el tramo medio y alto del río Turia (aguas arriba del embalse de Benageber) a los acuíferos situados en la cuenca baja de este río.

Para el Sistema Júcar se han analizado y actualizado las series de aportaciones utilizadas hasta la fecha y se ha realizado una nueva propuesta para la obtención de dichas series. La nueva propuesta implica una mejora sustancial en la fiabilidad de la estimación de dichas aportaciones, lo que se traduce en un importante aumento en la propia fiabilidad de los resultados obtenidos en los análisis de la gestión de los recursos hídricos de dichos sistemas. Además se actualizan las aportaciones naturales existentes en el río Júcar aguas abajo del embalse de Tous.

3.1.1.1 Aportaciones naturales del río Turia

A continuación se describe la mejora de la obtención de las series de aportaciones restituidas a régimen natural en el sistema de recursos hídricos del río Turia.

Como se muestra en la Figura 7 (esquema del sistema), las series de aportaciones consideradas son: Arquillo de San Blas (nueva serie considerada), Benagéber, Loriguilla, Bugarra (Pueblos Castillo) y Manises.

Se ha partido del estudio “Revisión y Actualización de los recursos hídricos superficiales del río Turia” (OPH, 2001) en el que se realiza una primera restitución a régimen natural de las series, las cuales son las que se están utilizando en la actualidad en modelos de gestión del sistema por parte de la OPH-CHJ.

El análisis detallado del proceso de obtención de dichas aportaciones se incluye en el Anejo A1 del presente documento.
Figura 7. Esquema del río Turia con los puntos en que se han obtenido las aportaciones

Nota: La aportación de Arquillo se grafía en líneas discontinuas porque es una aportación propuesta en este informe y que no se considerada con anterioridad.
Los recursos superficiales medios totales de la cuenca de río Turia se cifran en 466 hm3/año, los cuales presentan gran irregularidad temporal como aparece en la Figura 8, donde se muestran las series de aportaciones anuales obtenidas para cada uno de los puntos de la cuenca.

![Aportaciones anuales del río Turia](image)

Figura 8. Aportaciones anuales intermedias del río Turia, en el embalse de Arquillo de San Blas, en el embalse de Benageber, embalse de Loriguilla, en Pueblos Castillo (estación de Bugarra) y en Manises.

En la Tabla 1 se muestran las aportaciones medias anuales obtenidas para cada uno de los puntos de la cuenca.

<table>
<thead>
<tr>
<th>Aportación</th>
<th>Media Anual hm3/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arquillo San Blas</td>
<td>71,3</td>
</tr>
<tr>
<td>Benageber</td>
<td>191,6</td>
</tr>
<tr>
<td>Loriguilla</td>
<td>36,2</td>
</tr>
<tr>
<td>Bugarra (Pueblos Castillo)</td>
<td>89,2</td>
</tr>
<tr>
<td>Manises</td>
<td>70,7</td>
</tr>
<tr>
<td>Recursos totales.</td>
<td>465,6</td>
</tr>
</tbody>
</table>

Tabla 1. Aportaciones medias naturales en el río Turia.

La distribución media mensual presenta gran regularidad temporal, debido a la importante componente subterránea que tienen las aportaciones del río Turia (Figura 9).
Figura 9. Distribución mensual de las aportaciones totales en el río Turia

Durante la realización de este trabajo se ha obtenido la serie de aportaciones al embalse de Arquillo de San Blas, del cual se abastece la ciudad de Teruel. En la Figura 10 se muestra el esquema simplificado de la cabecera del río Turia.

Figura 10. Esquema de la cabecera del río Turia, confluencia de los ríos Guadalaviar y Alfambra junto con las estaciones de aforo y embalses existentes.
3.1.1.1.1 Modelo de transferencia de aguas subterráneas en la cuenca media del río Turia.

Para el análisis de las aportaciones en régimen natural existentes en el río Turia, se ha empleado un modelo de aportaciones que trata de reproducir los flujos naturales existentes en dicha cuenca.

Tras los primeros análisis estadísticos de las series de aportaciones naturales restituidas a régimen natural, se pudo comprobar la baja correlación existente entre las aportaciones en el tramo alto de la cuenca (cabecera hasta el embalse de Benagéber) y las aportaciones del tramo bajo de la cuenca (Benagéber hasta desembocadura). Sin embargo dicha correlación aumentaba con desfases temporales de 1 a 2 años, o lo que es lo mismo, 1 o 2 años después de tener altas aportaciones en el tramo alto de la cuenca aparecen altas aportaciones en el tramo bajo de la cuenca.

Por otro lado se cuenta con los resultados de la modelación lluvia escorrentía de la cuenca del río Turia realizada mediante el modelo SIMPA, desarrollado por el Centro de Estudios Hidrográficos del CEDEX. El contraste de dichos resultados en el tramo bajo de la cuenca con los obtenidos mediante la restitución de los datos de aforo a régimen natural presenta sensibles diferencias, lo que introduce incertidumbres respecto a los datos utilizados en la restitución a régimen natural o de los resultados de la modelación lluvia escorrentía, debido a que esta última no incluye en sus hipótesis de partida la componente del ciclo hidrológico correspondiente a las transferencias subterráneas entre acuíferos.

Tal y como figura en el Libro Blanco de las Aguas Subterráneas el 73 % de los recursos de las cuencas pertenecientes al ámbito territorial de la Confederación Hidrográfica del Júcar son de origen subterráneo. Este porcentaje se eleva hasta un 76 % para la cuenca del río Turia (siendo del 75 % en el tramo de cabecera hasta Benageber y del 80 % desde dicho embalse hasta la desembocadura). Todo ello indica la gran importancia que tienen los recursos de origen subterráneo en el ámbito de este estudio, y especialmente en el tramo aguas abajo del embalse de Benageber.

 Distintos estudios de detalle de las unidades hidrogeológicas (UHGs) incluidas en la cuenca del río Turia, establecen la existencia de transferencias laterales de las unidades hidrogeológicas existentes en la cuenca alta hacia las UHGs de la cuenca baja del río Turia, tal como se describe más adelante.
Por todo ello, se ha planteado un modelo de aportaciones en el cual se establece la existencia de un flujo subterráneo de agua, desde los acuíferos situados en la cuenca alta del río Turia (cabecera hasta el embalse de Benageber) hacia los acuíferos existentes en el tramo inferior, de forma que este flujo alimenta el tramo inferior del río Turia. El modelo de aportaciones planteado trata de reproducir los ciclos hidrológicos naturales existentes en la cuenca.

En el Anejo A4 de este documento se adjunta el estudio completo realizado.

Estudios previos

Los estudios previos existentes referidos al balance de las unidades hidrogeológicas que afectan a la cuenca del río Turia son:

2) “Normas de Explotación de las unidades hidrogeológicas del borde exterior de la Plana de Valencia” (CHJ noviembre 1994).

3) “Libro Blanco de las Aguas subterráneas en España” (DGOH, 1998), en el cual aparecen idénticos balances que en el estudio “ITGE 1994”.

4) “Seguimiento del balance hídrico de las unidades hidrogeológicas dentro del ámbito de la confederación Hidrográfica del Júcar” (OPH 2001e).

Cada uno de estos informes plantea valores diferentes de las transmisiones laterales existentes entre las distintas unidades hidrogeológicas, pero en todos ellos se plantea la existencia de dichas transferencias laterales. A modo de resumen se muestra en la Figura 11 una recopilación de dichas transferencias laterales planteadas.
Figura 11. Mapa de detalle de las unidades hidrogeológicas que afectan a la cuenca del río Turia y esquema de transferencias

Modelo de flujo planteado

El modelo conceptual y matemático utilizado para simular los flujos existentes en la cuenca del río Turia, utiliza por un lado los resultados obtenidos de la simulación lluvia escorrentía con el modelo SIMPA y por otro lado las series de aportaciones restituidas a régimen natural. Mediante la combinación de ambas metodologías se trata de establecer los flujos existentes en la cuenca del río Turia.

El esquema de flujo utilizado en el modelo planteado aparece en la figura siguiente:

![Diagrama de flujo](image)

Figura 12. Modelo de aportaciones propuesto.
Resultados obtenidos

Mediante el modelo planteado se han analizado diferentes posibilidades de transferencia, las cuales se detallan en el anejo correspondiente. Una de ellas consiste la utilización del modelo en la situación de no existencia de transferencias subterráneas.

Para el contraste de resultados se utilizan dos tipos de criterios simultáneamente:

1) Indicadores matemáticos: correlación cruzada, valores medios, error medio y la suma del error cuadrático entre la serie obtenida y la serie restituida a régimen natural para el tramo alto y bajo de la cuenca.

2) Similitud en los gráficos de aportaciones anuales del tramo alto y bajo de la cuenca.

Situación de no existencia de transferencia

La situación de partida correspondiente a la no existencia de transferencias subterráneas se muestra en la figura siguiente donde aparece la aportación total hasta el embalse de Benageber y la aportación intermedia aguas abajo de Benageber. En dicha figura se aprecia claramente las grandes divergencias entre la serie restituida a régimen natural y los resultados del modelo lluvia escorrentía SIMPA en el caso de que no existan transferencias.

Figura 13. Comparación entre las series restituidas a régimen natural y los resultados del modelo sin transferencias subterráneas.

Las correlaciones cruzadas obtenidas son: para la aportación hasta el embalse de Benagéber de 0,87, y para el tramo inferior de 0,45.
Modelo finalmente propuesto

Con el modelo finalmente propuesto se obtiene un mejor ajuste en las aportaciones anuales, tal y como aparece en la figura siguiente, así como una ligera mejora en los coeficientes de correlación cruzada para la aportación del tramo alto de la cuenca y una importante mejora en la correlación cruzada en las aportaciones del tramo bajo de la cuenca.

![Figura 14. Comparación entre las series restituidas a régimen natural y los resultados del modelo finalmente propuesto.](image1)

![Figura 15. Curva obtenida a partir de los datos y la propuesta.](image2)
Conclusiones alcanzadas

Tras el análisis realizado se obtienen las siguientes conclusiones:

1) Las aportaciones inferiores obtenidas a partir de la restitución a régimen natural de los datos de aforos y las obtenidas a partir del modelo lluvia escorrentia SIMPA difieren sensiblemente.

2) Existe una bibliografía reciente que establece la existencia de flujos subterráneos entre las unidades hidrogeológicas de la cuenca desde el tramo alto de la misma al tramo inferior de aproximadamente unos 60 hm³/año.

3) La aplicación del modelo planteado aumenta las semejanzas entre la serie de aportaciones obtenida con el modelo y la restituida a régimen natural, para los tramos alto y bajo de la cuenca. Dichas semejanzas quedan recogidas tanto en los coeficientes de correlación cruzada como en la mejora en la similitud en los gráficos de aportaciones anuales.

4) El modelo planteado establece la existencia de una transferencia anual media de unos 67 hm³/año. El 70% de los recursos renovables del tramo alto de la cuenca desaguan aguas arriba del embalse de Benagéber, mientras que el 30% restante se transfieren subterráneamente al tramo bajo de la cuenca donde se reincorporan al sistema superficial.

Como conclusión final de este análisis se obtiene que las series de aportaciones naturales calculadas mediante el proceso de restitución a régimen natural presentan una elevada fiabilidad, a pesar de las importantes divergencias que presentaban con las series obtenidas mediante el modelo SIMPA, y que dichas divergencias pueden deberse a que dicho modelo no incluye la posibilidad de transferencias subterráneas entre acuíferos.

Los resultados alcanzados no se incluirán en los modelos de gestión del río Turia pero sirven para aumentar la confianza en las series de aportaciones naturales calculadas mediante el proceso de restitución a régimen natural, como ya se ha indicado.

Otra de las conclusiones alcanzadas consiste en la disminución producida en los últimos 20 años en las transferencias subterráneas calculadas, la cual puede deberse a la puesta en funcionamiento en los últimos años de un gran número de pozos de extracción de agua en la parte media de la cuenca, Unidades Hidrogeológicas 22 y 23.
3.1.1.2 Aportaciones naturales del río Júcar

En el caso del río Júcar se ha llevado a cabo la actualización en la evaluación de recursos superficiales, incluyéndose las aportaciones existentes aguas abajo del embalse de Tous. Para ello se ha realizado un análisis exhaustivo de toda la información hidrológica existente en la cuenca, mediante la cual se obtienen los recursos hídricos en régimen natural existentes y se propone una metodología para las actualizaciones futuras de dichos recursos.

Se ha partido del estudio “Implantación en la Confederación Hidrográfica del Júcar de Herramientas de Decisión en materia de Explotación de Recursos Hídricos” (DIHMA, 2001) en el que se validan las series ya utilizadas hasta el momento en la Oficina de Planificación de la CHJ y se proponen alternativas a estas series así como los futuros estudios sobre los que se debería incidir.

De este informe parte también la serie de aportaciones denominadas “inferiores” que hasta el momento no se consideraba, la cual se corresponde con las aportaciones naturales existentes en el río Júcar aguas abajo del embalse de Tous. Dichas aportaciones se tratan con mayor detalle en los párrafos siguientes.

Por otro lado, el proceso de obtención de las series de aportaciones utilizadas actualmente por la OPH de la CHJ aparece en el informe “Revisión y Actualización de los recursos hídricos superficiales del río Júcar” de enero 2001 (OPH, 2001b), el cual ha servido también de apoyo para el trabajo objeto del presente documento. Dicho informe y el ya indicado (DIHMA, 2001) se basan en otro estudio anterior con el título “Análisis del sistema de recursos del río Júcar: Incidencia de la transferencia Júcar Vinalopó” (OPH, 1999).

Como novedad y mejora, se cuenta con el apoyo de los resultados obtenidos mediante el modelo de simulación lluvia-escorrentía SIMPA, el cual ha sido clave para la mejora de dichas estimaciones.

Se ha realizado un importante trabajo de análisis de todos los datos disponibles (gestión de embalses, estaciones de aforo, resultados del modelo SIMPA, etc.) el cual ha finalizado con una nueva propuesta de aportaciones naturales mensuales para la cuenca del río Júcar, desde octubre de 1940 hasta septiembre de 2001. Las nuevas series
propuestas son un elemento clave para los futuros análisis de gestión de la cuenca del Júcar ya que mejorarán la calidad de los resultados obtenidos.

En el Anejo A2a se muestra el proceso de obtención de las aportaciones naturales en el río Júcar realizado hasta la redacción del presente documento, dicha serie, en lo que sigue se denominará “ApoJucar2000”. En el Anejo A2b y A2c se adjunta el análisis de los datos hidrológicos disponibles y la nueva propuesta para la obtención de las aportaciones naturales en la cuenca del río Júcar, que se denominará “ApoJucar2002”. Además en este anejo se lleva a cabo la revisión de los procedimientos utilizados en estudios anteriores para realizar la restitución a régimen natural así como los resultados obtenidos mediante el modelo lluvia escorrentía SIMPA. Finalmente, se propone la formulación a utilizar para la obtención de las series restituidas a régimen natural a partir de los datos disponibles del Sistema Automático de Información Hidrológica SAIH de la CHJ, la cual podrá aplicarse en tiempo real para los análisis de la gestión del sistema frente a situaciones de sequía.

A la hora de evaluar los recursos en una cuenca se debe establecer en que puntos se quieren evaluar dichos recursos. Tanto las series anteriores “ApoJucar2000” como las series propuestas “ApoJucar2002” evalúan las aportaciones naturales en los mismos puntos de la cuenca, los cuales son:

- Alarcón: representa la aportación de la cuenca del río Júcar aguas arriba del embalse de Alarcón
- Molinar: representa la aportación de la cuenca del río Júcar entre el embalse de Alarcón y el de Molinar
- Contreras: representa la aportación del río Cabriel hasta el embalse de Contreras
- Tous: representa toda la aportación de los ríos Cabriel y Júcar, desde los embalses de Contreras y Molinar hasta el de Tous. Esta aportación se divide a su vez de forma proporcional en tres tramos:
 - Tramo Contreras Molinar-Embarcaderos
 - Tramo Embarcaderos-Naranjero
 - Tramo Naranjero-Tous
- Sueca: (o también llamada Aportaciones Inferiores) representa la aportación existente en el río Júcar entre el embalse de Tous y el Azud de Sueca.
Los resultados obtenidos en el análisis de las aportaciones “ApoJúcar2002” son:

- Validación de las series de aportaciones a los embalses de Alarcón y de Contreras

- Propuesta de una nueva metodología para la obtención de las aportaciones en régimen natural del tramo intermedio Alarcón-Molinar. Para la obtención de dicha serie se ha realizado la modelización del acuífero de la Mancha Oriental mediante un modelo pluricelular englobado de dos celdas.

- Revisión y mejora de la serie de aportaciones intermedias entre los embalses de Molinar y Contreras y el embalse de Tous, donde se han incluido, además de las afecciones antrópicas que se utilizaban en las metodologías anteriores, la correspondientes a: evaporación de los embalses hidroeléctricos, consumos de la Central Nuclear de Cofrentes y las pérdidas por filtraciones del embalse de Tous.

- Actualización y validación de las aportaciones existentes aguas abajo del embalse de Tous.

De todo el análisis realizado destaca fundamentalmente la calibración de un modelo pluricelular de dos celdas, para el acuífero de la Mancha Oriental, durante la obtención de las series de aportaciones naturales, mediante el cual se han alcanzado resultados muy satisfactorios y que permitirá introducir dicho acuífero en el modelo global de simulación del sistema Júcar.

Las aportaciones naturales del río Júcar en régimen natural para el periodo 1940/41-2000/01 aparecen en Tabla 2 y se localizan tal y como se indica en la Figura 19.

<table>
<thead>
<tr>
<th>Aportación</th>
<th>Media Anual hm³/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarcón</td>
<td>420,6</td>
</tr>
<tr>
<td>Contreras</td>
<td>366,1</td>
</tr>
<tr>
<td>Alarcón-Molinar</td>
<td>299,2</td>
</tr>
<tr>
<td>Molinar-Contreras-Tous</td>
<td>253,5</td>
</tr>
<tr>
<td>Aportaciones hasta embalses.</td>
<td>1.339,4</td>
</tr>
<tr>
<td>Aportaciones inferiores (Sueca)</td>
<td>218,9</td>
</tr>
<tr>
<td>Aportaciones totales.</td>
<td>1.558,3</td>
</tr>
</tbody>
</table>

Figura 17. Aportaciones restituidas a régimen natural en la cuenca del río Júcar.
Figura 18. Distribución mensual de las aportaciones en la cuenca del Júcar.
ALARCÓN
421 hm\(^3\)/año

CONTRERAS
366 hm\(^3\)/año

CONTRERAS-MOLINAR-TOUS
254 hm\(^3\)/año

ALARCÓN-MOLINAR
299 hm\(^3\)/año

Aportaciones inferiores (SUECA)
219 hm\(^3\)/año

Aportación total regulable 1339 hm\(^3\)/año

Aportación total 1558 hm\(^3\)/año

Figura 19. Aportaciones naturales en la cuenca del río Júcar.
Las aportaciones naturales del río Júcar en cada uno de los tramos considerados se resumen en los siguientes apartados. La descripción detallada de la obtención de las aportaciones naturales se adjunta en los anexos A2b (Análisis de los datos hidrológicos disponibles) y A2c (Evaluación de las aportaciones naturales en la cuenca del río Júcar).

3.1.1.2.1 Tramo cabecera del río Júcar – Embalse de Alarcón

El tramo Cabecera del río Júcar hasta el embalse de Alarcón destaca por las pocas afecciones al régimen natural existentes, salvo la incorporación de las aguas del acueducto Tajo-Segura (ATS) en las inmediaciones del embalse de Alarcón. En la figura siguiente se muestra el esquema hidrológico de este tramo de río.

Figura 20. Esquema del río Júcar entre cabecera y el embalse de Alarcón.
Se ha validado la metodología utilizada actualmente por la OPH y se ha procedido a actualizar con dicha metodología la serie hasta el año hidrológico 2000/01. La aportación media anual para el periodo 1940/41-2000/01 es de 421 hm³/año.

Figura 21. Serie de aportaciones restituida a régimen natural en el embalse de Alarcón
3.1.1.2.2 Tramo cabecera del río Cabriel – Embalse de Contreras

El tramo cabecera del río Cabriel hasta el embalse de Contreras presenta bajas afecciones de carácter antrópico.

Debe destacarse la existencia de filtraciones en el embalse de Contreras por lo cual es necesario cuantificar dichas pérdidas si se desea conocer los recursos disponibles a partir de los datos de explotación de embalse.

Figura 22. Esquema del río Cabriel entre cabecera y el embalse de Contreras.
Al igual que en el tramo anterior se han contrastado la serie restituida a régimen natural obtenida en el ámbito del trabajo objeto del presente documento, la serie calculada por la OPH de CHJ (ambas obtenidas considerando las pérdidas por filtración y evaporación existentes en el embalse de Contreras) y los resultados del modelo SIMPA. Las series obtenidas en los tres casos presentan similitudes satisfactorias, por lo que se valida la metodología utilizada en la actualidad por la OPH de CHJ y se procede a actualizar la serie con dicha metodología. La aportación media del periodo 1940/41-2000/01 es de 366,1 hm3/año, mostrándose dicha serie en la figura siguiente.

![Figura 23. Serie de aportaciones restituida a régimen natural en el embalse de Contreras.](image-url)
3.1.1.2.3 Tramo Alarcón - Molinar

El tramo del río Júcar entre el embalse de Alarcón y el embalse de Molinar presenta un alto grado de afecciones en su régimen natural, debido a las extracciones de los riegos que utilizan aguas de la Unidad Hidrogeológica de la Mancha Oriental. Dichas afecciones hacen que la evaluación de los recursos naturales en este tramo presente una gran complejidad ya que produce una disminución de los caudales que se aportan del acuífero al río.

En la figura siguiente se muestra el esquema del río Júcar entre los embalses de Alarcón y Molinar, donde se aprecia claramente la conexión entre el acuífero de la Mancha Oriental y el río Júcar.
Unidad Hidrogeológica de la Mancha Oriental

La Unidad Hidrogeológica 8.29 Mancha Oriental se sitúa en el extremo oriental de la llanura manchega, con una extensión de unos 7.500 km\(^2\). Hidrográficamente, el sistema pertenece a la cuenca del Júcar y de su afluente principal el Cabriel.

Esta unidad hidrogeológica está limitada al norte por el paralelo aproximado de los embalses de Alarcón y Contreras, al noroeste por la divisoria hidrogeológica de aguas Júcar – Guadiana, al este y sudeste le ofrecen límite los afloramientos diapíricos impermeables del triásico; al sur, la divisoria hidrográfica Júcar – Segura, y por último, al oeste limita con la subunidad Jardín – Lezuza (8.30). Todo esto se puede observar en la Figura 25.

Hidrogeológicamente, la U.H.G. Mancha Oriental se puede considerar como un acuífero multicapa, formado por la superposición de varias unidades acuíferas de naturaleza diversa. Según un estudio del Instituto Tecnológico y Geominero de España realizado en 1982, se distingue:

- Un acuífero profundo, confinado en su mayor parte, y constituido por dolomías y calizas frecuentemente karstificadas del Jurásico. Su potencia media es de 250 a 350 m y máxima de 400 m. Sus características hidráulicas son buenas, con transmisividades medias desde 100 a 500 m\(^2\)/h.

- Suprayacente se encuentra un acuífero confinado del Cretácico, con litología de dolomías y calizas, a veces karstificadas. Su potencia oscila entre los 50 y los 150 m, y sus características hidráulicas son semejantes o algo inferiores al caso anterior.

- Por último, el acuífero del Mioceno. Se trata de un acuífero libre, que se desarrolla sobre calizas lacustres, con unos 150 m de potencia máxima, y valores de transmisividad de 50 a 300 m\(^2\)/h.
Figura 25: Unidad Hidrogeológica 8.29 en el ámbito de la cuenca del río Júcar

Según estudios del ITGME, desde 1975 se viene observando un descenso continuado de 1,1 m/año de valor medio. En algunas zonas, especialmente en la margen derecha del Júcar, al sur de Albacete, el descenso ha sido más intenso, llegando a 3 m/año, tal y como se aprecia en la Figura 26. Estos descensos de los niveles piezométricos, además de los incrementos en los costes de bombeo y de reprofundización de pozos, provocan afecciones al Júcar, que llegó a secarse en varios de sus tramos.

Figura 26: Descensos piezométricos producidos en la Unidad Hidrogeológica 8.29 Mancha Oriental en la ciudad de Albacete.
Análisis de la evolución histórica en el tramo

En primer lugar si se analizan las aportaciones aforadas entre el embalse de Alarcón y el embalse de Molinar, que se resumen en la figura siguiente, se aprecia una importante disminución en las aportaciones registradas llegando incluso a ser el río perdedor en los últimos años.

![Gráfico de aportaciones intermedias](image)

Figura 27: Aportación anual intermedia aforada en el tramo del río Júcar entre Alarcón y Molinar.

En la Figura 27 se observa la existencia histórica de una importante ganancia hídrica por el drenaje del acuífero de la Mancha Oriental e incorporación de sus aguas al río Júcar. La aportación media entre el embalse de Alarcón y Molinar, sin restituir, es de 320 hm3/año para el periodo comprendido entre los años hidrológicos 1942/43 – 1980/81.

Esta ganancia disminuye en la década de los ochenta, y llega a anularse e incluso a invertir su signo en los últimos años, transformándose el tramo en perdedor.

Aunque no toda esta ganancia es debida al flujo subterráneo, porque hay una parte imputable a escorrentía superficial (34 hm3/año) y además los últimos años se caracterizan por la existencia de una persistente sequía, la Figura 28 demuestra que el efecto de la escorrentía superficial y de la disminución de la precipitación es pequeño, frente al efecto principal de detracción debido a las extracciones intensivas del acuífero de la Mancha Oriental.
Figura 28. Comparación entre la aportación Alarcón – Molinar sin restituir y el volumen de lluvia en hm³ correspondiente a la cuenca del Júcar entre Alarcón y Molinar

Todo esto hace necesario, para la evaluación de los recursos en régimen natural, considerar los efectos que producen las extracciones del acuífero sobre los drenajes del mismo al río Júcar.

Para considerar los efectos de la disminución de drenajes al río Júcar se ha realizado un modelo, para la obtención de las aportaciones naturales en este tramo, que incluye la simulación del acuífero con las extracciones históricas producidas en la Mancha Oriental. El modelo planteado se basa en la utilización, como datos de partida, de los resultados de la simulación lluvia escorriente (Modelo SIMPA) obtenidos para este tramo, y a su vez ha sido calibrado con los datos de aportaciones aforadas en el tramo intermedio Alarcón – Molinar, presentando un acuerdo muy satisfactorio entre los resultados del modelo y los datos aforados.

Finalmente, los resultados del modelo han sido validados con los datos de evolución de los niveles piezométricos en puntos de control próximos al río Júcar.

Descripción del modelo planteado

Se han planteado varios modelos, de forma progresiva de menor a mayor complejidad en su formulación, en los que se considera el acuífero de la Mancha Oriental como un acuífero unicelular y como un acuífero pluricelular englobado con dos celdas, sometido
a las acciones de la recarga natural por infiltración y a las acciones de los bombeos históricos producidos en el acuífero.

En la Figura 29 se puede observar un esquema conceptual con todos los elementos que intervienen en los modelos considerados.

Los datos utilizados por el modelo son: el excedente del recurso en la cuenca objeto de estudio entre el embalse de Alarcón y Molinar proporcionado por el modelo SIMPA, y por otro lado los datos de extracciones históricas y aportaciones aforadas en el tramo intermedio.

El modelo descompone el excedente en aportación superficial y en infiltración que recarga el acuífero de la Mancha Oriental, el cual está conectado con el río. Las salidas del acuífero se unen a la aportación superficial anterior obteniéndose la aportación total del tramo intermedio Alarcón Molinar, la cual a su vez se compara con los datos de aportación aforada en dicho tramo.

Figura 29: Esquema para los modelos propuestos en el tramo Alarcón – Molinar

Finalmente y tras analizar los resultados de los distintos modelos planteados se ha optado por un modelo pluricelular englobado de dos celdas, con una celda de descarga rápida y una celda de descarga lenta. El acuífero es alimentado por la infiltración producida por la lluvia, la cual es obtenida a su vez a partir de los resultados distribuidos de la variable “excedente” que proporciona el modelo lluvia escorrentía.
SIMPA mediante una ley de infiltración ajustada con el parámetro I_{max} (Máxima capacidad de infiltración del terreno) que ha sido calibrado para este modelo.

Para simplificar la exposición únicamente se detallan los resultados obtenidos con el modelo definitivamente adoptado. En el anejo “A2c” se adjuntan todos los modelos planteados y las formulaciones de los mismos.

Extracciones de agua producidas en la Unidad Hidrogeológica 8.29 Mancha Oriental

Para las extracciones producidas en el acuífero de la Mancha Oriental se han utilizado en primer lugar, el trabajo “Estudio del seguimiento del impacto de las extracciones de aguas subterráneas en los acuíferos de la Mancha Oriental y los caudales del río Júcar” (DGOH, 1993), donde se obtiene una evolución de las extracciones del acuífero de la Mancha Oriental para el periodo analizado entre los años 1973/74 y 1989/90, según se observa en la Tabla 3.

<table>
<thead>
<tr>
<th>Año</th>
<th>Volumen hm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973/74</td>
<td>90</td>
</tr>
<tr>
<td>1974/75</td>
<td>100</td>
</tr>
<tr>
<td>1975/76</td>
<td>105</td>
</tr>
<tr>
<td>1976/77</td>
<td>113</td>
</tr>
<tr>
<td>1977/78</td>
<td>143</td>
</tr>
<tr>
<td>1978/79</td>
<td>163</td>
</tr>
<tr>
<td>1979/80</td>
<td>183</td>
</tr>
<tr>
<td>1980/81</td>
<td>205</td>
</tr>
<tr>
<td>1981/82</td>
<td>228</td>
</tr>
<tr>
<td>1982/83</td>
<td>277</td>
</tr>
<tr>
<td>1983/84</td>
<td>300</td>
</tr>
<tr>
<td>1984/85</td>
<td>320</td>
</tr>
<tr>
<td>1985/86</td>
<td>342</td>
</tr>
<tr>
<td>1986/87</td>
<td>367</td>
</tr>
<tr>
<td>1987/88</td>
<td>393</td>
</tr>
<tr>
<td>1988/89</td>
<td>407</td>
</tr>
<tr>
<td>1989/90</td>
<td>395</td>
</tr>
</tbody>
</table>

Tabla 3: Volúmenes extraídos del acuífero de la Mancha Oriental según DGOH, 1993

En segundo lugar, del estudio “Situación actual y posibilidades de aprovechamiento del río Júcar” (DGOH, 1997) también se estiman los valores de bombeo bruto que vienen registrados en la Tabla 4.

<table>
<thead>
<tr>
<th>Año</th>
<th>Volumen hm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963/64</td>
<td>15</td>
</tr>
<tr>
<td>1969/70</td>
<td>29</td>
</tr>
<tr>
<td>1991/92</td>
<td>425</td>
</tr>
<tr>
<td>1993/94</td>
<td>439</td>
</tr>
</tbody>
</table>

Tabla 4: Volúmenes extraídos del acuífero de la Mancha Oriental según DGOH, 1997.
Finalmente, según el informe técnico para la toma de decisiones en el “Plan de Explotación 2001” de la unidad hidrogeológica de la Mancha Oriental, realizado por el Instituto Técnico Agronómico Provincial de Albacete (ITAP, 2001), la extracción bruta de agua en la unidad para la campaña 2000 ha sido de 460 hm³.

A partir de toda esta información, e interpolando linealmente los años en que no se dispone de datos, se obtienen unos bombeos cuya evolución viene dada por la figura adjunta.

El bombeo neto se ha obtenido a partir del bruto suponiendo que retorna al acuífero un 20 % del volumen total extraído.

![Diagrama de bombeos neto y bruto en la Mancha Oriental](image)

Figura 30. Evolución de bombeos bruto y neto considerados en el acuífero de la Mancha Oriental.
Calibración del modelo

El modelo ha sido calibrado con los datos de aportaciones aforadas en el tramo intermedio Alarcón Molinar para el periodo 1942/43-2000/01 (véase el anejo A2c).

Los resultados obtenidos se pueden ver en la Figura 31. En ella se observa que en el periodo 1980/81 – 2000/2001 se consigue reproducir los descensos en la aportación a escala mensual originados por los bombeos, y se aprecia el buen ajuste alcanzado mediante el modelo planteado.

Una vez calibrado el modelo planteado en régimen alterado (incluyendo las extracciones históricas producidas en el acuífero) con las aportaciones intermedias calculadas como diferencia de los datos aforados a la entrada y salida del tramo, es posible obtener las aportaciones que se producirían según el modelo en régimen natural (considerando nulos los bombeos producidos). La diferencia entre ambos resultados del modelo planteado son las detracciones producidas en el río Júcar debidas a las extracciones de agua producidas en el acuífero de la Mancha Oriental.

Finalmente las aportaciones naturales del tramo Alarcón-Molinar se obtienen como suma de la aportación intermedia obtenida por diferencia de los datos aforados, a la entrada y salida del tramo, y las detracciones obtenidas como se ha indicado anteriormente.
Figura 31. Contraste del modelo planteado y los datos de aportaciones del tramo Alarcón Molinar.
Como resumen, en la Figura 32 se muestran las aportaciones aforadas en el tramo, las aportaciones restituidas a régimen natural (que será la serie utilizada en el modelo de simulación) y la diferencia de ambas que es la detracción producida por las extracciones de la Mancha. En dicha figura se aprecia claramente los efectos antrópicos producidos en las aportaciones registradas en este tramo.

Figura 32. Aportaciones aforadas, restituidas a régimen natural y detracciones del tramo Alarcón Molinar.

La aportación media en régimen natural del periodo 1940/41-2000/01 para este tramo es de 300 hm3/año y la serie finalmente obtenida se muestra en la Figura 33.

Figura 33. Serie propuesta de aportaciones restituida a régimen natural entre Alarcón y Molinar.
De los resultados del modelo puede obtenerse el resumen de la Tabla 5 para el periodo 1940/41 a 2000/01, aplicando el reparto obtenido en el modelo de aportación superficial (11,4 %) y subterránea (88,6 %) a la aportación restituida a régimen natural, calculada a partir de los datos de aforo.

<table>
<thead>
<tr>
<th></th>
<th>(1) mm/año</th>
<th>(2) hm3/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitación</td>
<td>400,6</td>
<td></td>
</tr>
<tr>
<td>Evapotranspiración Potencial</td>
<td>924,9</td>
<td></td>
</tr>
<tr>
<td>Evapotranspiración Real</td>
<td>375,8</td>
<td></td>
</tr>
<tr>
<td>Infiltración</td>
<td>22,2</td>
<td></td>
</tr>
<tr>
<td>Aportación superficial</td>
<td>34,0</td>
<td></td>
</tr>
<tr>
<td>Aportación Subterránea</td>
<td>265,2</td>
<td></td>
</tr>
<tr>
<td>Aportación total</td>
<td>299,2</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5. Valores medios del tramo Alarcón Molinar para el periodo 1940/41-2000/01. (1) Valores medios áreas de la unidad hidrogeológica 8.29 Mancha Oriental. (2) Valores medios anuales de aportación en el tramo Alarcón Molinar (abarca mayor superficie que la UHG 8.29)

Validación del modelo mediante contraste con los datos de niveles piezométricos

Finalmente se han contrastado los resultados obtenidos mediante el modelo propuesto con la evolución de los niveles de un conjunto de piezómetros situados en las inmediaciones del río Júcar. Dicho contraste se ha realizado después de haber calibrado el modelo por lo que puede considerarse como una validación del mismo. El análisis detallado de este apartado se muestra en el anejo “A2d”.

Los datos históricos y resultados del modelo utilizados en el contrate son (en el periodo 1940/41 2000/01):

- Caudales circulantes por el tramo Alarcón – Molinar
- Caudal de relación río acuífero resultado del modelo en régimen natural
- Caudal de relación río acuífero del modelo en régimen alterado
- Detracciones totales producidas en las aportaciones (diferencia de las dos series anteriores)

Dichas series se han contrastado con los niveles registrados en un conjunto de piezómetros situados próximos al río Júcar, que disponen de datos en el periodo de enero 1996 a julio de 2002, los cuales son:
Tabla 6. Piezómetros utilizados

<table>
<thead>
<tr>
<th>Código</th>
<th>Piezómetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.29.041</td>
<td>Pozo CHJ 8</td>
</tr>
<tr>
<td>08.29.042</td>
<td>Pozo CHJ 9</td>
</tr>
<tr>
<td>08.29.043</td>
<td>Pozo CHJ 11</td>
</tr>
<tr>
<td>08.29.044</td>
<td>Pozo CHJ 12</td>
</tr>
<tr>
<td>08.29.045</td>
<td>Pozo CHJ 13</td>
</tr>
<tr>
<td>08.29.046</td>
<td>Pozo CHJ 14</td>
</tr>
<tr>
<td>08.29.047</td>
<td>Pozo CHJ 16</td>
</tr>
<tr>
<td>08.29.048</td>
<td>Pozo CHJ 18</td>
</tr>
<tr>
<td>08.29.049</td>
<td>Pozo CHJ 20</td>
</tr>
<tr>
<td>08.29.050</td>
<td>Pozo CHJ 21</td>
</tr>
<tr>
<td>08.29.051</td>
<td>Pozo CHJ 25</td>
</tr>
<tr>
<td>08.29.052</td>
<td>Pozo CHJ 15</td>
</tr>
</tbody>
</table>

Dichos piezómetros se encuentran ubicados muy próximos al río Júcar según se muestra en la figura siguiente:

Figura 34. Ubicación de los piezómetros más representativos considerados en el contraste.

Se han realizado correlaciones cruzadas entre todas las variables descritas anteriormente, cuyos resultados se resumen en la tabla siguiente. De dichas correlaciones destaca la baja relación existente entre los caudales circulantes columna...
“entradas tramo” y el resto de variables como pueden ser los resultados del modelo en régimen natural y los niveles piezométricos. Sin embargo, si que se encuentran altas correlaciones entre las variables: piezómetro CHJ-11, el caudal río-acuífero en régimen alterado columna “bombeo” y la detracción calculada, diferencia entre las aportaciones calculadas en régimen alterado y las obtenidas considerando las extracciones de agua existentes en el acuífero columna “detracción”. Este hecho indica la buena similitud entre el modelo planteado y los datos de niveles piezométricos registrados.

<table>
<thead>
<tr>
<th>COEFICIENTE DE CORRELACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entradas tramo</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Ent. tramo</td>
</tr>
<tr>
<td>Bombeo</td>
</tr>
<tr>
<td>Natural</td>
</tr>
<tr>
<td>Detracción</td>
</tr>
<tr>
<td>POZO CHJ 11</td>
</tr>
<tr>
<td>POZO CHJ 12</td>
</tr>
<tr>
<td>POZO CHJ 13</td>
</tr>
<tr>
<td>POZO CHJ 14</td>
</tr>
<tr>
<td>POZO CHJ 16</td>
</tr>
</tbody>
</table>

Tabla 7. Correlaciones cruzadas entre los datos, los resultados del modelo, y los niveles piezométricos.

Con mayor detalle, en la figura siguiente se muestra el gráfico de dispersión entre el piezómetro CHJ-11 y el caudal circulante, así como entre dicho piezómetro y los resultados del modelo en régimen natural, donde se aprecia claramente la baja correlación existente.

Figura 35. Correlación entre el pozo CHJ-11 y los caudales circulantes y resultados del modelo en régimen natural.

De igual forma se aprecia una alta correlación entre el piezómetro CHJ-11 y los caudales de relación río-acuífero resultantes del modelo y la detracción calculada, tal y como se puede ver en la figura adjunta.
Figura 36. Correlación entre el pozo CHJ-11 y resultados del modelo en régimen alterado y detracciones calculadas.

Todos estos resultados validan el modelo planteado para la obtención de las aportaciones en el tramo Alarcón-Molinar, pudiéndose establecer una relación sencilla entre los niveles piezométricos, los caudales de relación río acuífero en régimen alterado, y la detracción, tal y como aparece en las figuras siguientes.

Figura 37. Relación entre el pozo CHJ-11 y el caudal de relación río acuífero en régimen alterado.

Figura 38. Relación entre el pozo CHJ-11 y la detracción calculada.
3.1.1.2.4 Tramo de los ríos Júcar y Cabriel entre los embalses de Molinar, Contreras y Tous.

Este tramo presenta una gran complejidad debido al elevado grado de alteración antrópica existente, con un gran número de infraestructuras de regulación hidráulica que, además, son cambiantes a lo largo de los años. Por otro lado, por este tramo de río son muy elevados los caudales circulantes con lo cual los errores de medición que se producen pueden ser del mismo orden de magnitud que las aportaciones naturales intermedias registradas en el mismo. Todos estos motivos dificultan de forma considerable la obtención de las aportaciones naturales en este tramo, haciendo imposible llegar a niveles de desagregación inferiores.

Se puede distinguir dos subtramos, fundamentalmente, aunque las aportaciones naturales que se han obtenido definitivamente son para todo el conjunto.

-Río Cabriel entre el embalse de Contreras y la confluencia con el río Júcar.

-Río Júcar entre el embalse de Molinar y el embalse de Tous.

Subtramo del río Cabriel entre el embalse de Contreras y la confluencia del río Júcar

Este subtramo no tiene gran complejidad y además cuenta con la estación de aforos E-112 la cual presenta altas correlaciones con las salidas del embalse de Contreras si se tienen en cuenta los retornos de las filtraciones producidas en el embalse.

Es posible obtener las aportaciones de este subtramo utilizando los datos de la estación E-112, con lo cual se conoce qué parte de la aportación total del tramo Contreras Molinar Tous se corresponde con el río Cabr iel y qué parte se corresponde con el río Júcar. Dicho resultado es utilizado posteriormente para descomponer la aportación total del tramo en dos.

En la Figura 40 se muestra la serie de aportaciones correspondiente a este subtramo, con una aportación media de 142 hm³, lo que representa aproximadamente un 57,5% de la aportación total del tramo Molinar Contreras Tous.

Figura 40. Aportación natural entre el embalse de Contreras y la estación de aforos E-112.
Subtramo del río Júcar entre el embalse de Molinar y el embalse de Tous

Este subtramo presenta un elevado nivel de alteración humana, además de tener elevados caudales circulantes, lo cual hace que los errores de medición sean del mismo orden de magnitud que las aportaciones naturales del mismo, como ya se ha indicado en la introducción de este apartado.

En la Figura 41 se muestra la evolución cronológica de infraestructuras existentes en este subtramo.
Todas estas modificaciones en el régimen natural del río hacen necesaria la utilización de formulaciones diferentes para cada periodo de tiempo. Por otro lado, en el cálculo de las aportaciones en este subtramo aparecen gran cantidad de meses con aportaciones de valor negativo, lo cual plantea incertidumbres sobre la validez de esta serie.
Por este motivo se ha procedido a calcular las aportaciones del tramo en su conjunto, es decir, Molinar, Contreras y Tous. La metodología empleada es similar a la utilizada actualmente en la OPH de CHJ (OPH, 2002). Únicamente destaca la incorporación, a la formulación, de las pérdidas por el consumo de la Central Nuclear de Cofrentes, las evaporaciones de los embalses hidroeléctricos del tramo y del embalse de Tous y, finalmente, las filtraciones existentes en el embalse de Tous.

La aportación media en el período adopta un valor de 253,5 hm\(^3\)/año, frente a los 278 hm\(^3\)/año de la serie OPH-CHJ (OPH, 2002).

![Figura 42. Serie de aportaciones al río Júcar entre Contreras, Molinar y Tous](image)

Esta aportación calculada es posible descomponerla en dos con el siguiente reparto, el cual está basado en la estimación de las aportaciones en el primer subtramo utilizando la estación de aforos E-112:

- 60% se corresponde con la aportación entre el embalse de Contreras y la estación E-112, en la confluencia de los ríos Cabriel y Júcar.
- 40% se corresponde con la aportación del río Júcar entre los embalses de Molinar y Tous.
3.1.1.2.5 Aportaciones aguas abajo del embalse de Tous hasta el azud de Sueca

Para evaluar las aportaciones naturales existentes aguas abajo del embalse de Tous, se ha llevado a cabo la validación y actualización de la metodología planteada en el trabajo “Implantación en la CHJ de Herramientas de decisión en materia de Explotación de Recursos Hídricos” (DIHMA 2001). En el anejo A3 del presente documento se adjunta, de forma detallada, el modelo planteado y el análisis de toda la información utilizada para su calibración.

En la Figura 43 se muestra el mapa de situación del área de estudio, que es el tramo inferior del río Júcar.

![Figura 43. Mapa de situación de la cuenca baja del río Júcar.](image)

Para la correcta estimación de las aportaciones en régimen natural, existentes en el río Júcar aguas abajo de Tous, es necesario cuantificar lo más fiablemente posible los retornos de riego procedentes de la Ribera Alta, ya que estos se suman a las aportaciones naturales que se registran en el río Júcar a su paso por la estación de aforos de Huerto Mulet.

Por este motivo, y en el marco del trabajo citado, se consideró un modelo que reproducía los flujos de agua existentes en el río Júcar entre el embalse de Tous y su desembocadura, obteniéndose las aportaciones naturales al río Júcar entre el embalse de Tous y el azud de Sueca, para lo cual era necesario estimar la cantidad de retornos de riego existentes en el río procedentes de las zonas de riego de la Ribera Alta.
En consecuencia, se desarrolló un modelo que representaba con suficiente fiabilidad el comportamiento del sistema del río Júcar aguas abajo del embalse de Tous y más concretamente, que permitía la obtención de las series de aportaciones entre este embalse y la estación de aforos de Huerto Mulet (situada muy próxima al azud de Sueca). Dichas aportaciones se corresponden con la aportación de los ríos Albaida, Verde, Sellent, Magro y el propio Júcar en este tramo. Pero, además, en esta zona existe una intensa interacción entre el sistema superficial y el acuífero de la Plana Sur, de manera que se da una fuerte conexión entre el sistema de aguas superficiales y subterráneas, con retornos de riegos tanto al río como al acuífero y flujos de aguas del acuífero al río.

Toda esta compleja situación dificulta la cuantificación de los volúmenes de agua que es necesario desembalsar de Tous para suministrar las demandas de las Acequias Inferiores, ya que las sueltas necesarias no se corresponden con la suma de los caudales solicitados en cada una de las acequias, sino que esta suma se reduce por el volumen adicional que aporta el acuífero al río en situación natural, por los retornos de riegos al río y por los aportes de las cuencas intermedias.

La alta interconexión hidrológica, unida a la escasez de información foronómica redundante de la zona y a la baja fiabilidad de algunos de los datos disponibles, supone una importante complicación para el estudio detallado del funcionamiento operativo del sistema.

Usualmente se formula la restitución al régimen natural, de forma sencilla, y se obtienen resultados que no se suelen contrastar ni validar. Esto puede ser tolerable para ciertos casos sencillos, o de relativa trascendencia, pero en el caso aguas abajo de Tous, no es posible admitir esto, debido por una parte a la complejidad de sistema, y por otra, a su trascendencia en la gestión del sistema y en el ahorro del recurso.

En el trabajo citado anteriormente se planteó una restitución basada en los siguientes elementos:

- Modelo de retornos de riego, superficial y subterráneo.
- Modelo de lluvia-escorrentía, SIMPA.
- Modelo de regresión.
- Optimización de parámetros del modelo de retornos que mejor ajuste producen al conjunto de la restitución.
ESTUDIO DE UTILIZACIÓN CONJUNTA DE LOS RECURSOS HÍDRICOS SUPERFICIALES y SUBTERRÁNEOS DE LAS CUENCAS MEDIAS Y BAJAS DE LOS RÍOS JÚCAR Y TURIA

Debido a la complejidad que presenta el sistema aguas abajo del embalse de Tous, y con el objetivo de exponer con mayor claridad el modelo de retornos planteado para la estimación de aportaciones en este tramo, se realiza seguidamente la descripción detallada de los usos de agua existentes en el río Júcar aguas abajo del embalse de Tous.

Descripción del sistema aguas abajo del embalse de Tous

Aguas abajo del embalse de Tous se localizan la mayor parte de las demandas consuntivas con aguas superficiales de la cuenca del río Júcar (véase Figura 44).

Del embalse parte el canal Júcar-Turia con una capacidad de 32 m³/s. Este canal suministra la demanda agraria de los riegos del Canal Júcar-Turia y parte de los abastecimientos de las ciudades de Valencia y Sagunto.

Aguas abajo del embalse de Tous, en el río Júcar, tienen sus tomas las acequias que riegan la Ribera Alta:

- Acequia Escalona: Riega 3.853 ha, la mayor parte en el término de Villanueva de Castellón. La capacidad máxima de la acequia es de 6 m³/s.
- Acequia Carcagente: Riega 2.923 ha, y se extiende en una longitud de 14 km.
- Acequia Real de Júcar – Acequia Antella: Es el mayor regadío tradicional valenciano. Se estima en 24,678 ha (para la Acequia Real son 21.872 ha según fuentes de la propia Acequia, con la siguiente distribución: cítricos 13.837 Has, huerta 4.116 Has y arroz 3.919 Has), que se ubican en la margen izquierda del río Júcar. La acequia Real tiene una capacidad máxima de 42 m³/s, y una concesión de riego de 34,5 m³/s, mientras que la acequia de Antella tiene una concesión de 0,655 m³/s.

Aguas abajo de las tomas de las acequias de la Ribera Alta, el río discurre por una zona donde recibe aportes. En esta zona ubicada entre el azud de Antella y la estación de aforos de Huerto Mulet (Alzira) situada próxima al azud de Sueca, se incorporan los retornos superficiales y subterráneos de las acequias de la Ribera Alta. Además, se incorporan las aportaciones de los ríos Magro, Albaida, Verde y Sellent.

Aguas abajo de la estación de aforos de Huerto Mulet se ubican las tomas de los riegos de la Ribera Baja:

- Acequia de Sueca: Riega una superficie de 8.358 ha, que recoge la totalidad de la superficie de las tres acequias en las que se divide. La dotación es elevada debido a
la gran superficie de riego de arrozales, en la que la práctica del riego se realiza por inundación.

- Acequia de Cuatro Pueblos: Riega una extensión de 1.830 ha, y recibe su nombre por los pueblos de Corbera, Riola, Fortaleny y Polinyà del Xuquer.
- Acequia de Cullera: Riega 4.359 ha, considerando en esta superficie tanto la derivación por la margen derecha como por la margen izquierda.

Los retornos de estos riegos son tanto superficiales como subterráneos y parte vuelven al propio río, tanto aguas arriba del azud de Sueca como aguas abajo del mismo, y otra parte se escapa a la Albufera o directamente al mar.

En la Figura 44 aparece el esquema de flujos existente en el tramo inferior del río Júcar.
Descripción del modelo

El modelo planteado utiliza dos series temporales de datos y requiere el ajuste de ocho parámetros. El ajuste y calibración de los parámetros se realiza comparando los resultados del modelo de retornos planteado con los resultados del modelo SIMPA para el conjunto de cuencas: Magro, Verde, Sellent, Albaida y la cuenca del Júcar entre el embalse de Tous y el azud de Sueca. Con toda esta información se realiza el ajuste de los parámetros mediante la utilización de algoritmos de optimización.

Las series temporales empleadas para obtener las aportaciones naturales del tramo intermedio Tous-Azud de Sueca, son:

- Volumen mensual derivado por las acequias superiores (Suma de Acequia Real, Escalona, Carcaixent y Antella), a partir de la estación de aforos EA-61 (Acequia Real) y de los datos procedentes del Área de Explotación de la Confederación Hidrográfica del Júcar (CHJ) para el resto de acequias.

- Aportaciones intermedias medidas en el tramo Tous-Azud de Sueca. Los datos utilizados son los procedentes del Área de Explotación de la CHJ, salvo el caso de la Acequia Real del Júcar donde se utiliza la estación de aforos EA-61. Dicha elección se motiva por ser los que a priori presentan mayor fiabilidad o mayor cantidad de datos registrados, pese a disponerse en la actualidad de otras estaciones de aforo y medidores SAIH en dichos puntos. La serie de aportaciones ha sido obtenida como:

 - Diferencia entre el caudal que llega al Azud de Sueca (Volumen vertido por el Azud de Sueca más los volúmenes derivados por las acequias de Sueca y Cuatro Pueblos), menos el caudal que circula por el Azud de Antella (Salidas Totales de Tous menos el volumen derivado al Canal Júcar-Turia y los volúmenes derivados por las acequias de Escalona, Carcaixent, Antella y Acequia Real).

Debe destacarse, como aclaración, que el caudal que pasa por el Azud de Sueca se calcula a partir de los niveles de la lámina de agua registrados en dicho Azud mediante la aplicación de una curva de gasto.

En el tramo del río Júcar situado entre la estación de aforos de Huerto Mulet y el Azud de Sueca existen unas pequeñas tomas de riego, con derecho a la captación de agua, de
las cuáles no se dispone de información de volúmenes de agua derivados a partir del río Júcar. Dichas tomas de riego pueden llegar a derivar hasta caudales de 1 m3/s en las épocas de riego.

La curva de gasto obtenida para el Azud de Sueca ha sido calculada a partir de los caudales registrados en la estación de aforos de Huerto Mulet (situada próxima y aguas arriba de dicho azud) en aquellas épocas en que las pequeñas tomas mencionadas anteriormente no derivaban agua.

Por todos estos motivos los datos registrados en la estación de aforos de Huerto Mulet no coinciden con la suma de los caudales registrados en el Azud de Sueca y los volúmenes derivados por la Acequia de Sueca y de Cuatro Pueblos.

En la Figura 45 se muestra el esquema del río Júcar aguas abajo de Tous, indicándose los puntos donde se dispone de datos registrados así como el esquema de flujo que utiliza el modelo y las variables definidas en el mismo.

Figura 45. Modelo de aportaciones planteado.
La descripción de los parámetros, en primer lugar, y del resto de variables, en segundo lugar, empleadas es:

1) SRA (Superficie de riegos de la Ribera Alta) ..22.900 ha
2) DOTN (Dotación neta Ribera Alta) ..5.800 m³/ha/año
3) Ur (Eficiencia de riego Ribera Alta) ..0,5
4) \(1-\beta_a\) (porcentaje de retorno superficial al Júcar) 35 %
5) \(\beta_b\) (Porcentaje de retorno subterráneo al Júcar) 35 %
6) \(\alpha\) (Coeficiente de descarga del acuífero)0,18 mes\(^{-1}\)
7) SNB. (Superficie de extracción de agua subterránea)3.000 ha
8) DOTNB. (Dotación neta zona de riegos agua subterránea)5.510 m³/ha/año

El resto de variables empleadas es:

9) AA (agua aplicada en parcela).
10) Der (Agua derivada por el conjunto de las acequias superiores).
11) ETR\(^*\) (evapotraspiración potencial del área de la Ribera Alta).
12) AI (retornos de riego en forma agua infiltrada en la Ribera Alta).
13) Der-AA (retornos de riego en forma de agua de respuesta rápida).
14) ASB (Salidas del acuífero debidas a los retornos de riego).
15) RD (porción de los retornos de respuesta rápida que desembocan en el río Júcar aguas arriba del azud de Sueca).
16) RDalb (porción de los retornos de respuesta rápida que desembocan en el río Júcar aguas abajo del azud de Sueca o en la albufera de Valencia).
17) RSBJ (porción de los retornos del acuífero que desembocan en el río Júcar aguas arriba del azud de Sueca).
18) RSBA (porción de los retornos del acuífero que desembocan en el río Júcar aguas abajo del azud de Sueca; en la albufera de Valencia o directamente en el mar).
Resultados del modelo

En el trabajo objeto del presente documento se han mantenido los parámetros obtenidos en el trabajo DIHMA, (2001), prolongando la serie restituida a régimen natural hasta el año 2000/01.

En la Figura 46 se muestran los resultados medios obtenidos con el modelo de retornos utilizado para la restitución a régimen natural, y donde únicamente es posible conocer de forma agregada para el tramo final del Júcar, la Albufera y el mar, los retornos de origen superficial (91,2 hm³/año) y los retornos de origen subterráneo (62,7 hm³/año).

Figura 46. Resultados medios del modelo de retornos planteado para la Ribera del Júcar.

En él se aprecia que la aportación media en régimen natural en el periodo 1987/88-2000/01 es de 285,3 hm³/año.
Finalmente, validada la metodología y comprobado el buen ajuste ha sido posible obtener la serie completa de aportaciones desde 1940/41 hasta 2000/01. Obteniéndose ésta según se describe a continuación:

- Periodo 1940/41 – 1986/87: a partir de los resultados de aportaciones naturales del modelo SIMPA en ese tramo, ajustándolos mediante 12 regresiones extraídas del periodo común de resultados de SIMPA y del modelo de retornos (1987/88 – 2000/01) y reajustadas por armónicos de Fourier. Ya que no se dispone de información detallada de los volúmenes derivados por cada una de las acequias de la Ribera del Júcar.

La serie obtenida tiene una media de 220 hm3/año y se muestra en la Figura 47. De esta serie destaca que la media de todo el periodo es inferior a la media del periodo 1987/88 – 1998/99 con 285,3 hm3/año, lo cual se debe a que las aportaciones obtenidas con el modelo SIMPA para este último periodo son también superiores a las del periodo histórico completo.

![Figura 47. Aportaciones naturales anuales entre el embalse de Tous y Huerto Mulet.](image-url)
3.1.2 **Retornos de agua existentes en los sistemas Júcar y Turia**

Existen numerosos puntos de retorno de agua en ambas cuencas, siendo estos en la mayoría de los casos de pequeña magnitud.

En la cuenca del río Turia destacan los siguientes retornos al sistema superficial:

- El retorno del abastecimiento de la ciudad de Teruel; el cual puede estimarse en un 80% del volumen de agua tomado por esta ciudad del embalse del Arquillo de San Blas para su abastecimiento (3,5 hm³/año), lo cual supone que retornan al río Turia unos 2,8 hm³/año.

- El retorno de riego del área de Pueblos Castillo; el cual se cifra en aproximadamente un 30% del agua derivada a esta zona, que suponen aproximadamente, un retorno de 16 hm³/año.

En la cuenca del río Júcar destacan los siguientes retornos:

- El retorno del abastecimiento de la ciudad de Cuenca, el cual puede cifrarse, como en el caso de la ciudad de Teruel en un 80% del abastecimiento a la ciudad, que se incorporan al río Júcar.

- El retorno del abastecimiento de la ciudad de Albacete, el cual es aprovechado en su totalidad por las comunidades de regantes situadas aguas abajo de esta ciudad.

- El retorno de los riegos tradicionales de la Ribera Alta del Júcar; el cual ha sido tratado en el apartado anterior para la estimación de los recursos existentes aguas abajo del embalse de Tous. Estos se cifran aproximadamente en unos 90 hm³/año entre el embalse de Tous y el azud de Sueca, unos 44 hm³/año en el tramo final del río Júcar, unos 62 hm³/año como retornos a la Albufera, y unos 64 hm³/año de salidas directas al mar.
En la Tabla 8 se muestra la distribución detallada de los retornos debidos a los riegos tradicionales de la Ribera Alta del Júcar. Dicha estimación de retornos se ha realizado de forma conjunta entre el modelo de aportaciones del apartado anterior y el modelo distribuido del acuífero de la Plana de Valencia Sur del que se hablará más adelante. El análisis detallado puede consultarse en el Anejo F4 del presente documento.

<table>
<thead>
<tr>
<th>hm³/año</th>
<th>Río Júcar hasta azud Sueca</th>
<th>Río Júcar Azud Sueca–desembocadura</th>
<th>Albufera</th>
<th>Mar</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficial</td>
<td>38,4</td>
<td>27,4</td>
<td>38,7</td>
<td>40,5</td>
<td>145,1</td>
</tr>
<tr>
<td>Subterráneo</td>
<td>52,8</td>
<td>16,1</td>
<td>22,8</td>
<td>23,8</td>
<td>115,5</td>
</tr>
<tr>
<td>Total</td>
<td>91,2</td>
<td>43,6</td>
<td>61,5</td>
<td>64,3</td>
<td>260,6</td>
</tr>
</tbody>
</table>

Tabla 8. Distribución de los retornos medios debidos a los riegos de la Ribera Alta del Júcar (hm³/año), periodo 1987/88-2000/01.

Aproximadamente el 40% de los retornos son de origen subterráneo, los cuales presentan una gran regularidad temporal debido a la gran inercia que tiene el acuífero, mientras que el 60% corresponde a retorno superficial que presenta mucha mayor irregularidad y depende del volumen de agua derivado cada año para los riegos de la Ribera Alta. Los años con grandes volúmenes derivados por esas acequias, presentan retornos superficiales que pueden alcanzar los 200 hm³, mientras que los años de carestía, con derivaciones menores, los retornos superficiales son prácticamente nulos.

Existen alrededor de 90 hm³/año de retorno al río Júcar antes del azud de Sueca, lo cual significa que puede ser aprovechado por las acequias existentes a partir de dicho azud, aunque dicho valor medio presenta gran variabilidad por el mismo motivo expuesto anteriormente.

Las salidas a la Albufera de Valencia, debidas a los retornos de riego de la Ribera Alta del Júcar, se estiman en 62 hm³/año de valor medio, correspondiendo un 63% a retornos de origen superficial y un 37% a retornos de origen subterráneo. En la Figura 48 se muestran los valores anuales de dichos retornos.

Destaca la gran regularidad anual que presentan los retornos de origen subterráneo frente a la gran irregularidad que tiene el volumen de retornos superficiales, el cual depende fuertemente del volumen de agua derivado por las acequias superiores en el año.
Mediante la combinación del modelo de aportaciones y del modelo matemático distribuido del acuífero de la Plana Sur ha sido posible estimar la totalidad de los flujos de retornos existentes. En la figura siguiente se muestra la distribución de los flujos estimados en el caso de que se suministre la demanda establecida en el PHJ para los riegos de la Ribera Alta (446 hm³/año).

![Diagrama de flujos](attachment:Diagrama.png)

Figura 49. Distribución de los flujos existentes en la Ribera del Júcar con la asignación establecida por el PHJ a las demandas de la Ribera Alta del Júcar.

3.1.3 **Reutilización de aguas residuales en Júcar y Turia**

La reutilización es un componente intrínseco del ciclo del agua ya que, mediante el vertido de efluentes a los cursos de agua y su dilución con el caudal circulante, las aguas residuales han venido siendo reutilizadas tradicionalmente por tomas aguas abajo del punto de incorporación al cauce. Es importante distinguir entre reutilización indirecta, que es la mencionada y la más común, y reutilización directa, que es aquella en la que el segundo uso se produce a continuación del primero, sin que entre ambos el agua se incorpore a ningún cauce público.

Las posibilidades de reutilización están directamente relacionadas con las disponibilidades de volúmenes efluentes tratados, que a su vez dependen del número y capacidad de las estaciones depuradoras existentes y de su ubicación geográfica.

En el anexo D4 se analiza la situación actual y futura (a corto plazo) de las posibilidades de reutilización de aguas residuales depuradas en las cuencas media y baja de los ríos Júcar y Turia. El estudio se centra, exclusivamente, en la recopilación de la información disponible que, aunque inconexa, permite un cierto análisis de carácter macroscópico que, en todo caso, puede ser útil para decidir estrategias futuras de incorporación de estos recursos al sistema global correspondiente.

![Figura 50. EDARs en las cuencas medias y bajas de las cuencas del Júcar y Turia.](image_url)
Entre las depuradoras con mayor volumen reutilizado se encuentra la de Valencia-Pinedo que destaca entre el resto de depuradoras del área metropolitana de Valencia, con una reutilización actual de 10 hm³, pero que tiene prevista de forma inmediata una reutilización mucho mayor de sus aguas.

Cabe destacar también otras depuradoras englobadas dentro del Plan de Reutilización de Aguas Residuales Depuradas del Área Metropolitana de Valencia (COPUT, 1998), Quart, Carraixet, Paterna, L’Horta Nord, Torrent, Camp del Turia II que, junto con la ampliación de Pinedo, está previsto que puedan lograr una reutilización, si se llevaran a cabo todas las actuaciones previstas en dicho plan, de 103,44 hm³ de los que 72,36 hm³ se aportarían al regadío y 31,08 hm³ a la Albufera de Valencia por motivos medioambientales, todo esto según fuentes del propio Plan de Reutilización (COPUT, 1998). En la tabla 9 se pueden ver los valores tanto actuales como previstos por el Plan de Reutilización de aguas residuales depuradas del área metropolitana de Valencia (PRARV) de dichas depuradoras.

<table>
<thead>
<tr>
<th>E.D.A.R.</th>
<th>Depurado PRARV hm³/año</th>
<th>Depurado 2000 hm³/año</th>
<th>Reutil actual</th>
<th>Reutiliza futura</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camp Turia I</td>
<td>3,4</td>
<td>2,45</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Camp Turia II</td>
<td>3,7</td>
<td>2,45</td>
<td>-</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>L’Horta Nord</td>
<td>4,7</td>
<td>8,08</td>
<td>-</td>
<td>4,29</td>
<td></td>
</tr>
<tr>
<td>L’Horta Nord Carraixet</td>
<td>8,6</td>
<td>11,55</td>
<td>-</td>
<td>6,53</td>
<td></td>
</tr>
<tr>
<td>Paterna</td>
<td>11,1</td>
<td>1,65</td>
<td>-</td>
<td>9,91</td>
<td>No construida en su totalidad</td>
</tr>
<tr>
<td>Pinedo I Valencia</td>
<td>45,6</td>
<td>57,08</td>
<td>10,46 A. Oro</td>
<td>27,78+31,08</td>
<td>Oro, Favara y Albufera</td>
</tr>
<tr>
<td>Pinedo II Valencia</td>
<td>67,5</td>
<td>58,88</td>
<td>-</td>
<td>16,19</td>
<td></td>
</tr>
<tr>
<td>Quart- Benager</td>
<td>21,9</td>
<td>12,78</td>
<td>-</td>
<td>16,19</td>
<td></td>
</tr>
<tr>
<td>Torrent</td>
<td>4,6</td>
<td>5,40</td>
<td>3,96</td>
<td></td>
<td>Sector XII Canal Júcar Turia</td>
</tr>
<tr>
<td>Perellonet</td>
<td>0,5</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saler</td>
<td>0,33</td>
<td>0,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmar</td>
<td>0,11</td>
<td>0,20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>172,04</td>
<td>161,77</td>
<td>10,46</td>
<td>103,44</td>
<td></td>
</tr>
<tr>
<td>Agrícola</td>
<td></td>
<td></td>
<td></td>
<td>72,36</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 9 Reutilización actual y prevista en el Plan de Reutilización del área metropolitana de Valencia.

Tras el análisis de la información disponible, que se puede consultar en el anejo D4 se llega a la conclusión de que salvo el caso del área metropolitana de Valencia, en la que se da una concentración de población importante (1.250.000 habitantes), y por tanto una concentración de recursos procedentes de depuración de magnitud muy relevante, unido
a la localización de demandas también importantes que pueden aprovechar dichos recursos (acequias de la Vega de Valencia y Acequia de Moncada), en el resto de las cuencas bajas de los sistemas Júcar y Turia la reutilización de los recursos depurados solo puede tener un interés local y, en todo caso, marginal dada la escasa importancia de estos recursos frente a las correspondientes demandas.

La reutilización de las aguas depuradas del área metropolitana de Valencia supone una fuente adicional de recursos no solo para el sistema Turia sino para el Júcar pues estos caudales depurados pueden sustituir a futuros caudales ecológicos procedentes de Tous para la Albufera tras la modernización de los regadíos tradicionales.

En todo caso, y a modo de resumen, en la tabla siguiente se esquematizan las posibilidades de reutilización mas relevantes analizadas en el presente documento.
DEPURADORAS

<table>
<thead>
<tr>
<th>DEPURADORAS</th>
<th>VOLUMEN REUTILIZABLE (Hm³/año)</th>
<th>ZONA DE POSIBLE REUTILIZACIÓN</th>
<th>% DE DEMANDA BRUTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINEDO QUART</td>
<td>104</td>
<td>- Acequias de la Vega y S. XII del Canal Júcar-Turia (74 Hm³) - Albufera (30 Hm³)</td>
<td>45 %</td>
</tr>
<tr>
<td>CARRAIXET PATerna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TORRENT HORTA NORD CAMP DEL TURIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L’ALCUDIA DE CRESPINS XÁTIVA</td>
<td>5.5</td>
<td>- Vega de Xátiva - Riegos no tradicionales de la Costera</td>
<td>10 %</td>
</tr>
<tr>
<td>LLOSA DE RANES GENOVÈS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANCOMUNIDAD DEL MARQUESADO</td>
<td>0.3</td>
<td>- Marquesado (Sindicato Central de Forata)</td>
<td>6 %</td>
</tr>
<tr>
<td>SELLENT COTES BENEIXIDA ALCÁNTERA</td>
<td>0.8</td>
<td>- Tierras Altas de la Vall de Cárcer y Sellent</td>
<td>10 %</td>
</tr>
<tr>
<td>ALGEMESI-ALBALAT ALBUFERA SUR</td>
<td>2.5</td>
<td>- Arrozales de la Acequia Real del Júcar</td>
<td>3 %</td>
</tr>
<tr>
<td>CULLERA FAVARA SUECA</td>
<td>2.5</td>
<td>- Arrozales de los regadíos tradicionales de la Ribera Baja</td>
<td>1.5 %</td>
</tr>
<tr>
<td>ALZIRA</td>
<td>2.2</td>
<td>- Regadíos tradicionales margen derecha del Júcar</td>
<td>2.5 %</td>
</tr>
</tbody>
</table>

Tabla 10. Tabla resumen de las posibilidades de reutilización más relevantes
3.2 RECURSOS SUBTERRÁNEOS

La distribución generalizada del agua en el interior de los acuíferos, la sencillez de su alumbramiento y la ausencia, en general, de partículas en suspensión, confieren a las aguas subterráneas características muy estimables como recurso hídrico. Los acuíferos son simultáneamente almacén de agua y vía de transporte de la misma.

En este capítulo se van a describir las unidades hidrogeológicas adscritas al ámbito del presente estudio y que son de análisis obligado si se pretende realizar un uso conjunto de recursos superficiales y subterráneos.

Unidades hidrogeológicas

A continuación se describen brevemente las unidades asociadas a las cuencas del Júcar y Turia.

![Figura 51. Unidades hidrogeológicas dentro del ámbito territorial de la Confederación Hidrográfica del Júcar](image)

En las cuencas del Júcar y Turia puede hablarse de tres tipos de formaciones acuíferas:
1) Acuíferos de las cuencas altas, excedentarios en recursos y con escasa explotación.

En este sentido cabría destacar las unidades hidrogeológicas 8.02 Montes Universales, 8.17 Serranías de Cuenca, por su extensión, y en general casi todas las unidades asociadas a las cuencas altas del Júcar y Turia por su importante aportación subterránea a estos ríos.

Las características de estas cuencas son sus escasos bombeos y altas infiltraciones de lluvia lo que provoca importantes descargas laterales al resto de unidades.

Este grupo de acuíferos está situado aguas arriba de los embalses por lo que un uso conjunto de estos recursos no mejoraría significativamente las disponibilidades globales debido a que los bombeos podrían disminuir las aportaciones de entrada a los embalses. Dichos acuíferos drenan a las cuencas altas del Júcar y Turia importantes volúmenes de agua por lo que una mayor explotación de los mismos podría mermar considerablemente la cifra de regulación superficial.

2) Grupo de unidades de las cuencas intermedias, destacando las unidades de 8.22 Llíria-Casinos, 8.20 Medio Palancia, 8.29 Mancha-Oriental, 8.27 Caroch Norte y 8.28 Sur y 8.23 Buñol-Cheste.

Las características de estas unidades son sus elevados bombeos que en algunos casos superan el 80% de la recarga media. En estas unidades se realiza un uso conjunto en la actualidad.

En anteriores capítulos, en concreto en el punto 3.1.1, ya se ha hablado del modelo de transferencias de aguas subterráneas en la cuenca media del río Turia, en el anejo A4 se puede encontrar información detallada de dicho modelo. En dicho anejo se analiza la repercusión que tienen los bombeos en las aportaciones superficiales, hecho éste que ha reducido los recursos superficiales en los últimos años.

En el capítulo 7 se puede encontrar un resumen del modelo confeccionado de los acuíferos del Turia medio y bajo donde se analizan los efectos de los bombeos en dichos acuíferos sobre los niveles piezométricos, los caudales de relación entre río y acuífero, la disminución de reservas o las detracciones al río Turia. La modelación de estos acuíferos se encuentra desarrollada en el anejo F3.

En el capítulo 9 y con mayor profusión en el anejo D5 se puede ver un posible nuevo enfoque del uso conjunto entre los riegos de la Acequia de Moncada y los del Camp del...
Turia que se traduciría en una disminución de los bombeos en la unidad Llíria-Casinos y un aprovechamiento mayor de los excedentes subterráneos de las unidades costeras, como la de la Plana de Valencia.

Concretamente, la propuesta final de actuaciones necesarias para el esquema de uso conjunto de recursos superficiales y subterráneos en la zona regable de la Acequia de Moncada, que en la actualidad se suministra exclusivamente de recursos superficiales del Turia regulados en el embalse de Benagéber, consistiría en la construcción de 8 pozos de una capacidad de extracción de 125 l/s cada uno, que junto con la electrificación de 7 pozos de sequía existentes, permitirían el bombeo de 10 hm³/año del acuífero de la Plana Norte de Valencia para su utilización en el suministro de riegos de la zona. La incorporación de estos recursos subterráneos, junto con la reutilización de aguas residuales depuradas, mejoraría las garantías de los riegos de la Acequia de Moncada produciendo, adicionalmente, un ahorro de recursos superficiales en el embalse de Benagéber que, por otra parte, podrían utilizarse para sustituir bombeos de abastecimientos urbanos en el acuífero Llíria-Casinos disminuyendo así, su intensa explotación actual.

Entre los estudios de detalle también destaca el caso de los regadíos del río Magro. La situación del sistema ha resultado sostenible, si bien para la mejora de garantías se ha propuesto la construcción de 4 pozos en los términos de Alfarp, Catadau y Llombai, en la cola del sistema, con unos costes de 2 céntimos de €/m³.

Finalmente, el caso de la unidad de la Mancha Oriental requiere una mención especial por su importancia específica para el sistema Júcar. Se trata de un acuífero de grandes dimensiones y que se encuentra conectado con el río Júcar en su tramo medio. Dicho acuífero está sometido a una gran explotación de sus recursos naturales, presenta actualmente extracciones del orden de los 460 hm³/año (ITAP, 2001), lo cual supera los recursos renovables del mismo. Como consecuencia de esta intensa explotación se han producido fuertes descensos en los niveles piezométricos del acuífero y también se han reducido de forma considerable las aportaciones del mismo al río Júcar llegando incluso en los últimos años a invertirse dicho flujo, siendo el río perdedor en lugar de ganador.

Debido a la importancia que tiene este acuífero en el sistema Júcar y en los efectos producidos en las aportaciones naturales del río, ha recibido un análisis específico en este estudio como se ha podido ver en anteriores capítulos.
3) **Unidades costeras**

Son las UHG 8.25 y 8.26 de la Plana de Valencia Norte y Sur respectivamente. En estas unidades los recursos son altos debido en gran parte a los importantes excedentes de riego provocados por la gran extensión de regadíos y los sistemas de riego tradicional.

En estas unidades está especialmente indicado el uso conjunto, y para ello, se ha realizado un estudio de detalle del acuífero de la Plana Sur que incluye parte de la Plana Norte al incorporar a la modelación la totalidad de la Albufera, por su especial interés. Este estudio se puede consultar en el capítulo 6 y con mayor detalle en el anejo F1 (Modelo Matemático Distribuido del acuífero de la Plana Sur).

Esta modelación permite disponer de una herramienta capaz de simular la evolución de los acuíferos frente a acciones exteriores alternativas por una parte, y de integrar, en su caso, los modelos de los acuíferos en el modelo global de simulación de recursos hídricos Júcar-Turia.

En el capítulo 9 se hace mención al estudio para la electrificación de los pozos de sequía de la Acequia Real del Júcar, donde se plantea el uso exclusivo en épocas de sequía de 51 pozos con una capacidad máxima para extraer 71 hm3/año, sin peligro para la sostenibilidad del sistema. Todo ello ha sido corroborado por el modelo matemático distribuido Modflow, tal y como puede verse en los capítulos 6 y 8.

El balance global de las unidades hidrogeológicas asociadas a las cuencas del Júcar y Turia se puede ver en la **Tabla 11**.
<table>
<thead>
<tr>
<th>Cod UHG</th>
<th>Nombre Unidad</th>
<th>ENTRADAS</th>
<th></th>
<th>SALIDAS</th>
<th></th>
<th>BALANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Recarga Lluvia</td>
<td>Retornos</td>
<td>Recarga lateral</td>
<td>Total</td>
<td>Bombeos</td>
</tr>
<tr>
<td>8.01</td>
<td>CELLA-MOLINA DE ATAGON</td>
<td>11,04</td>
<td>0,20</td>
<td>0,00</td>
<td>11,24</td>
<td>0,15</td>
</tr>
<tr>
<td>8.02</td>
<td>MONTES UNIVERSALES</td>
<td>199,65</td>
<td>2,36</td>
<td>0,00</td>
<td>202,01</td>
<td>0,44</td>
</tr>
<tr>
<td>8.03</td>
<td>ARQUILLO-TRAMALCASTIEL-VILLEL</td>
<td>6,91</td>
<td>0,72</td>
<td>0,00</td>
<td>7,63</td>
<td>0,13</td>
</tr>
<tr>
<td>8.04</td>
<td>VALLANCA</td>
<td>33,21</td>
<td>0,88</td>
<td>0,00</td>
<td>34,09</td>
<td>0,26</td>
</tr>
<tr>
<td>8.05</td>
<td>JAVALAMBRE</td>
<td>46,41</td>
<td>2,91</td>
<td>30,00</td>
<td>79,32</td>
<td>0,4</td>
</tr>
<tr>
<td>8.06</td>
<td>MOSQUERUELA</td>
<td>145,84</td>
<td>5,64</td>
<td>0,00</td>
<td>151,48</td>
<td>5,73</td>
</tr>
<tr>
<td>8.15</td>
<td>ALPUENTE</td>
<td>43,76</td>
<td>3,15</td>
<td>0,00</td>
<td>46,91</td>
<td>1,03</td>
</tr>
<tr>
<td>8.16</td>
<td>OLMEDA</td>
<td>2,16</td>
<td>0,53</td>
<td>0,00</td>
<td>2,69</td>
<td>0,17</td>
</tr>
<tr>
<td>8.17</td>
<td>SERRANIA DE CUENCA</td>
<td>500,93</td>
<td>10,94</td>
<td>0,00</td>
<td>511,87</td>
<td>8,90</td>
</tr>
<tr>
<td>8.18</td>
<td>LAS SERRANIAS</td>
<td>68,57</td>
<td>4,36</td>
<td>0,00</td>
<td>72,93</td>
<td>4,90</td>
</tr>
<tr>
<td>8.19</td>
<td>ALCUBLAS</td>
<td>15,09</td>
<td>1,65</td>
<td>22,09</td>
<td>38,83</td>
<td>3,95</td>
</tr>
<tr>
<td>8.20</td>
<td>MEDIO PALANCIA</td>
<td>33,80</td>
<td>22,21</td>
<td>30,00</td>
<td>86,01</td>
<td>69,75</td>
</tr>
<tr>
<td>8.22</td>
<td>LIRIA-CASINOS</td>
<td>54,00</td>
<td>37,00</td>
<td>39,00</td>
<td>130,00</td>
<td>96,90</td>
</tr>
<tr>
<td>8.23</td>
<td>BUÑOL-CHESTE</td>
<td>44,00</td>
<td>7,10</td>
<td>24,00</td>
<td>75,10</td>
<td>28,56</td>
</tr>
<tr>
<td>8.24</td>
<td>UTIEL-REQUENA</td>
<td>35,76</td>
<td>4,76</td>
<td>10,00</td>
<td>50,52</td>
<td>6,42</td>
</tr>
<tr>
<td>8.25</td>
<td>PLANA DE VALENCIA NORTE</td>
<td>32,05</td>
<td>91,9</td>
<td>44,50</td>
<td>168,45</td>
<td>60,74</td>
</tr>
<tr>
<td>8.26</td>
<td>PLANA DE VALENCIA SUR</td>
<td>79,20</td>
<td>155,00</td>
<td>31,00</td>
<td>265,20</td>
<td>130,00</td>
</tr>
<tr>
<td>8.27</td>
<td>CAROCH NORTE</td>
<td>93,10</td>
<td>34,84</td>
<td>0,00</td>
<td>127,94</td>
<td>46,70</td>
</tr>
<tr>
<td>8.28</td>
<td>CAROCH SUR</td>
<td>81,70</td>
<td>33,41</td>
<td>1,00</td>
<td>116,77</td>
<td>31,77</td>
</tr>
<tr>
<td>Cod UHG</td>
<td>Nombre Unidad</td>
<td>ENTRADAS</td>
<td>SALIDAS</td>
<td>BALANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recarga</td>
<td>Retornos</td>
<td>Total</td>
<td>Bombeos</td>
<td>Descarga a cauces</td>
</tr>
<tr>
<td>8.29</td>
<td>MANCHA ORIENTAL</td>
<td>155,59</td>
<td>102,2</td>
<td>114,01</td>
<td>371,80</td>
<td>447,86</td>
</tr>
<tr>
<td>8.30</td>
<td>JARDIN-LEZUZA*</td>
<td>57,45</td>
<td>21,37</td>
<td>0,00</td>
<td>78,82</td>
<td>5,80</td>
</tr>
<tr>
<td>8.31</td>
<td>SIERRA DE LAS AGUAS</td>
<td>28,58</td>
<td>15,45</td>
<td>0,00</td>
<td>44,03</td>
<td>40,68</td>
</tr>
<tr>
<td>8.32</td>
<td>SIERRA GROSA*</td>
<td>73,70</td>
<td>24,8</td>
<td>0,00</td>
<td>98,50</td>
<td>49,09</td>
</tr>
<tr>
<td>8.33</td>
<td>ALMANSÁ*</td>
<td>2,94</td>
<td>2,58</td>
<td>0,00</td>
<td>5,52</td>
<td>5,48</td>
</tr>
<tr>
<td>8.34</td>
<td>SIERRA OLIVA*</td>
<td>3,26</td>
<td>0,28</td>
<td>0,50</td>
<td>4,04</td>
<td>0,49</td>
</tr>
<tr>
<td>8.36</td>
<td>VILLENA-BENEJAMA*</td>
<td>24,73</td>
<td>1,35</td>
<td>0,00</td>
<td>26,08</td>
<td>25,10</td>
</tr>
<tr>
<td>8.37</td>
<td>ALMIRANTE-MUSTALLA*</td>
<td>43,42</td>
<td>14,09</td>
<td>0,00</td>
<td>57,51</td>
<td>19,88</td>
</tr>
<tr>
<td>8.40</td>
<td>SIERRA MARIOLA*</td>
<td>28,43</td>
<td>0,5</td>
<td>1,00</td>
<td>29,93</td>
<td>7,08</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1665,26</td>
<td>564,47</td>
<td>315,90</td>
<td>2572,25</td>
<td>1002,04</td>
</tr>
</tbody>
</table>

Tabla 11. Balance de las unidades hidrogeológicas asociadas a la cuencas del Júcar y del Turia

*Estos balances se han establecido ponderando el área de la unidad hidrogeológica contenida en los sistemas de Júcar y Turia respecto a su área total.
Figura 52. Balance global de las aguas subterráneas

De acuerdo con la información proporcionada por los balances, queda claro que los recursos excedentarios de la Planas Norte y Sur de Valencia pueden servir muy eficazmente para elevar la garantía actual de los sistemas de explotación de recursos en situaciones de sequía.

El hecho de que las mayores posibilidades parezcan situarse en las Planas Norte y Sur de Valencia, en las inmediaciones de unas importantísimas zonas de riego atendidas con recursos superficiales regulados por el sistema de embalses Alarcón-Contreras-Tous (en el Júcar) y Benagéber-Loriguilla (en el Turia), permite concebir un esquema de uso conjunto de las aguas subterráneas como seguro de garantía adicional para estos riegos en situaciones de escasez, y del que ya existe un primer precedente en las actuaciones de construcción de sondeos (sequía 1993-1996) y equipamiento de sondeos, fundamentalmente la electrificación de algunos de los pozos, realizada con motivo de la última sequía (1999-2001).

En el ámbito de este trabajo se han planteado varios casos prácticos de uso conjunto, con sus valoraciones económicas, que se desarrollan en el capítulo 9 y que se explican con mayor detalle en los anejos D (“Análisis de estrategias de utilización conjunta”).

Dichos casos prácticos de utilización conjunta han avalado la sostenibilidad de una extracción sistemática de sequía del acuífero de la Plana Sur de Valencia de 71 hm3, a la
vez que se ha evaluado su coste en 2,2 céntimos de €/m3 incluyendo la amortización de la electricidad de los pozos.

Tanto este como los otros estudios de detalle parten de la premisa de una mayor explotación de los acuíferos costeros, en este caso el acuífero de la Plana de Valencia Norte y Sur, que tal y como se ha visto son los que permiten un mayor desarrollo del uso conjunto de recursos subterráneos y superficiales.

Dichas medidas se pueden completar con el estudio de utilización conjunta de la Acequia de Moncada y Camp del Turia ya comentado cuyos costes de explotación ronda el céntimo de €/m3, siendo el denominador común de todos estos estudios su sostenibilidad desde el punto de vista medioambiental y su viabilidad económica ya que en todos ellos los costes no han superado los 3 céntimos de €/m3.
4 USOS DEL AGUA EN LAS CUENCAS
4.1 USOS SECTORIALES

En este apartado se analizan los usos sectoriales del agua (urbano, agrario, industrial y otros) existentes en las cuencas de los ríos Turia y Júcar. Se analizan por un lado las estimaciones de cada una de las demandas existentes en dichas cuencas y por otro lado los suministros superficiales realizados en los últimos años a cada una de las unidades de demanda existentes.

El detalle de los usos de agua existentes en las cuencas se expone según la siguiente ordenación:

- Unidades de demanda Urbana; UDUs
- Unidades de demanda agraria; UDAs
- Unidades de demanda Industrial; UDIs
4.1.1 Unidades de demanda urbana UDUs.

Una de las características de la demanda urbana es la gran heterogeneidad en cuanto a la utilización de agua, pues los usos que engloban van desde utilización doméstica hasta municipal como pueden ser el riego de jardines, bomberos, pasando por algunas industrias que están conectadas a las redes.

Por otra parte, en las cuencas del Júcar y Turia, debido a la incidencia del turismo en las zonas litorales, se producen importantes incrementos de demanda en la época de verano. La demanda urbana está estrechamente relacionada con la evolución de la población. La evolución de la población permanente para el Júcar y Turia se puede ver en la Figura 53, los datos han sido facilitados por el Instituto Nacional de Estadísticas (INE). En dicha figura se comparan dichos datos con las proyecciones de población a los años 2002, 2012 definidas por el Plan Hidrológico del Júcar.

Cabe destacar de la figura anterior que el sistema Turia no ha tenido un crecimiento tan importante como se esperaba en las previsiones del Plan Hidrológico, por el contrario el sistema Júcar ha sufrido un incremento muy superior al previsto por el Plan. Todo ello

se debe a que no ha existido un flujo migratorio tan importante de zonas rurales a zonas urbanas como se suponía en el Plan Hidrológico.

Las demandas teóricas se evalúan a partir de datos censales de población, estimaciones de crecimiento de la población estacional y dotaciones teóricas. En dichos términos el volumen teórico demandado para el abastecimiento urbano en cada sistema es el que se da en la tabla siguiente.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Demandas urbanas teóricas (hm3/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turia</td>
<td>204,42</td>
</tr>
<tr>
<td>Jucar</td>
<td>113,3</td>
</tr>
<tr>
<td>Total</td>
<td>317,72</td>
</tr>
</tbody>
</table>

Tabla 12. Demandas urbanas teóricas por sistema de explotación para el año 2000 (DGOH, 2001)
Los datos que se exponen en este punto han sido obtenidos del estudio DGOH, 2001.

No obstante debe tenerse en cuenta que parte del suministro a la ciudad de Valencia se realiza desde el Júcar en una cantidad media en los últimos años de 94,6 hm3/año. Esta cantidad en el estudio antes citado se le atribuye al Turia por estar Valencia geográficamente dentro de dicho sistema de explotación, pero si se refiere a origen del agua la demanda quedaría de la siguiente manera.

<table>
<thead>
<tr>
<th></th>
<th>Demandas teóricas urbanas (hm3/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turia</td>
<td>109,82</td>
</tr>
<tr>
<td>Jucar</td>
<td>207,9</td>
</tr>
<tr>
<td>Total</td>
<td>317,72</td>
</tr>
</tbody>
</table>

Tabla 13. Demandas teóricas urbanas según origen del agua para el año 2.000 (DGOH,2001)
4.1.2 Unidades de demanda agraria UDAs

Los usos agrarios del agua comprenden los propiamente agrícolas, relativos a la producción vegetal, y los ganaderos, referentes a la producción animal, siendo este último poco significativo en comparación con los usos agrícolas.

El uso más importante es el regadío, en el que se incluyen los volúmenes de agua requeridos para la evapotranspiración de los cultivos y si es el caso, otros volúmenes adicionales de menor entidad, tales como lavado de suelos etc.

A diferencia del uso urbano, en la demanda de agua para riego se caracteriza por su gran volumen y su concentración en los meses más secos del año, lo que obliga a regular y movilizar importantes cantidades de agua anualmente. Se trata, con diferencia, de la mayor demanda de agua en la Confederación Hidrográfica del Júcar y por supuesto en sus dos principales sistemas de explotación, el del Júcar y el del Turia.

Las demandas brutas del sistema de explotación del Júcar según (DGOH, 2001) son de 1.712,63 hm3 mientras que para el sistema de explotación del Turia las demandas son de 450,81 hm3. Como se puede ver son las demandas más importantes del conjunto de la Confederación Hidrográfica del Júcar representando conjuntamente 2.163,4 hm3. Si se tiene en cuenta las cifras de recurso medio en la cuencas, según se ha visto en apartados anteriores, obtenemos que para la cuenca del Júcar la aportación media anual es de 1.561 hm3/año mientras que para el Turia es de 466 hm3/año, lo que supone 2.027 hm3/año de recurso superficial hídrico medio.

Las demandas agrícolas en el ámbito de la Confederación Hidrográfica del Júcar se dividen en unidades de demanda agraria (UDAs) que pueden verse en la Figura 55 donde se distinguen las UDAs en función del origen del agua. En amarillo se muestran las UDAs con suministro superficial, en color naranja las de origen Mixto y en rojo las UDAs de origen subterráneo.
Las superficies regadas, dotaciones brutas, demandas brutas superficiales y subterráneas de todas las unidades de demanda agraria de las cuencas del Júcar y Turia pueden verse en las tablas 13 y 14. Dicha información se ha obtenido del Seguimiento del Plan Hidrológico (DGOH, 2001)
<table>
<thead>
<tr>
<th>Código U.D.A.</th>
<th>Nombre</th>
<th>Superficie regada (has)</th>
<th>Dotación bruta (m³/ha/año)</th>
<th>Dem. Bruta superficial</th>
<th>Vol. Bombeo Bruto (hm³)</th>
<th>Demanda Bruta Total</th>
<th>Dotación neta (m³/ha/año)</th>
<th>Demanda neta superficial</th>
<th>Demanda neta subterránea</th>
<th>Demanda Neta Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>081023A</td>
<td>Sierra de Albarracín</td>
<td>642</td>
<td>6.546</td>
<td>4,20</td>
<td>0,00</td>
<td>4,20</td>
<td>3.273</td>
<td>2,10</td>
<td>0,00</td>
<td>2,10</td>
</tr>
<tr>
<td>081024A</td>
<td>Riegos Altos del Turia</td>
<td>2.096</td>
<td>9.232</td>
<td>19,35</td>
<td>0,00</td>
<td>19,35</td>
<td>3.231</td>
<td>6,77</td>
<td>0,00</td>
<td>6,77</td>
</tr>
<tr>
<td>081025A</td>
<td>Zona de Teruel (Alfambra)</td>
<td>1.686</td>
<td>6.309</td>
<td>10,64</td>
<td>0,00</td>
<td>10,64</td>
<td>3.155</td>
<td>5,32</td>
<td>0,00</td>
<td>5,32</td>
</tr>
<tr>
<td>081026A</td>
<td>Serranía de Valencia</td>
<td>1.180</td>
<td>7.847</td>
<td>9,26</td>
<td>0,00</td>
<td>9,26</td>
<td>3,923</td>
<td>4,63</td>
<td>0,00</td>
<td>4,63</td>
</tr>
<tr>
<td>081027A</td>
<td>Hoya de Buñol y Chiva</td>
<td>3.607</td>
<td>5.822</td>
<td>0,00</td>
<td>21,00</td>
<td>21,00</td>
<td>4,366</td>
<td>0,00</td>
<td>15,75</td>
<td>15,75</td>
</tr>
<tr>
<td>081028A</td>
<td>Camp del Turia</td>
<td>18.782</td>
<td>5.999</td>
<td>33,80</td>
<td>78,87</td>
<td>112,67</td>
<td>4,499</td>
<td>19,38</td>
<td>65,12</td>
<td>84,50</td>
</tr>
<tr>
<td>081028B</td>
<td>Manantial de San Vicente</td>
<td>1.028</td>
<td>13.031</td>
<td>0,00</td>
<td>13,40</td>
<td>13,40</td>
<td>4,561</td>
<td>0,00</td>
<td>4,69</td>
<td>4,69</td>
</tr>
<tr>
<td>081029A</td>
<td>Riegos del Turia (Pueblos Castillo)</td>
<td>6.294</td>
<td>12.868</td>
<td>72,89</td>
<td>8,09</td>
<td>80,98</td>
<td>4,504</td>
<td>22,34</td>
<td>6,00</td>
<td>28,35</td>
</tr>
<tr>
<td>081030A</td>
<td>R. Trad. Vega -Acequia Moncada</td>
<td>4.564</td>
<td>12.072</td>
<td>55,10</td>
<td>0,00</td>
<td>55,10</td>
<td>4,225</td>
<td>19,28</td>
<td>0,00</td>
<td>19,28</td>
</tr>
<tr>
<td>081030B</td>
<td>R. Tradi. de la Vega Resto Acequias</td>
<td>5.468</td>
<td>18.022</td>
<td>98,54</td>
<td>0,00</td>
<td>98,54</td>
<td>6,308</td>
<td>34,49</td>
<td>0,00</td>
<td>34,49</td>
</tr>
<tr>
<td>081032A</td>
<td>Riegos no Trad. de l'Horta Nord</td>
<td>4.540</td>
<td>5.653</td>
<td>0,00</td>
<td>25,66</td>
<td>25,66</td>
<td>4,240</td>
<td>0,00</td>
<td>19,25</td>
<td>19,25</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>49.887</td>
<td>9.036</td>
<td>303,78</td>
<td>147,02</td>
<td>450,81</td>
<td>4.513</td>
<td>114,32</td>
<td>110,81</td>
<td>225,13</td>
</tr>
</tbody>
</table>

Tabla 14. Demandas agrarias de la cuenca del Turia desagregadas por UDAs en hm³ para el año 2.000 (DGOH, 2001)
<table>
<thead>
<tr>
<th>Código U.D.A.</th>
<th>Nombre</th>
<th>Superficie regada (has)</th>
<th>Dotación bruta (m³/ha/año)</th>
<th>Dem. Bruta superf.</th>
<th>Vol. Bombeo Bruto (hm³)</th>
<th>Demanda Bruta Total</th>
<th>Dotación neta (m³/ha/año)</th>
<th>Demanda neta superficial</th>
<th>Demanda neta subterránea</th>
<th>Demanda Neta Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>081033A</td>
<td>Serranía de Cuenca</td>
<td>1.659</td>
<td>7.930</td>
<td>13,16</td>
<td>0,00</td>
<td>13,16</td>
<td>3.965</td>
<td>6,58</td>
<td>0,00</td>
<td>6,58</td>
</tr>
<tr>
<td>081034A</td>
<td>Cuenca del Cabriel</td>
<td>1.699</td>
<td>6.458</td>
<td>10,97</td>
<td>0,00</td>
<td>10,97</td>
<td>3.229</td>
<td>5,49</td>
<td>0,00</td>
<td>5,49</td>
</tr>
<tr>
<td>081035A</td>
<td>Embalse de Alarcón</td>
<td>1.705</td>
<td>7.061</td>
<td>12,04</td>
<td>0,00</td>
<td>12,04</td>
<td>3.531</td>
<td>6,02</td>
<td>0,00</td>
<td>6,02</td>
</tr>
<tr>
<td>081036A</td>
<td>Riegos Trad. Llanos de Albacete</td>
<td>4.996</td>
<td>5.438</td>
<td>0,00</td>
<td>27,17</td>
<td>27,17</td>
<td>4.079</td>
<td>0,00</td>
<td>20,38</td>
<td>20,38</td>
</tr>
<tr>
<td>081037A</td>
<td>R.Trad. río Júcar (Albacete y Cuenca)</td>
<td>6.232</td>
<td>5.231</td>
<td>32,60</td>
<td>0,00</td>
<td>32,60</td>
<td>3.923</td>
<td>24,45</td>
<td>0,00</td>
<td>24,45</td>
</tr>
<tr>
<td>081038A</td>
<td>Regadíos de la Mancha Oriental</td>
<td>72.503</td>
<td>5.357</td>
<td>0,00</td>
<td>388,40</td>
<td>388,40</td>
<td>4.285</td>
<td>0,00</td>
<td>310,68</td>
<td>310,68</td>
</tr>
<tr>
<td>081039A</td>
<td>Riegos de los ríos Jardín-Lezuza</td>
<td>3.208</td>
<td>11.080</td>
<td>35,54</td>
<td>0,00</td>
<td>35,54</td>
<td>3.878</td>
<td>12,44</td>
<td>0,00</td>
<td>12,44</td>
</tr>
<tr>
<td>081040A</td>
<td>Riegos de Almansa</td>
<td>2.519</td>
<td>9.626</td>
<td>10,40</td>
<td>13,86</td>
<td>24,26</td>
<td>4.813</td>
<td>2,10</td>
<td>10,02</td>
<td>12,12</td>
</tr>
<tr>
<td>081041A</td>
<td>Pequeños regadíos. Valle de Ayora</td>
<td>648</td>
<td>8.126</td>
<td>5,27</td>
<td>0,00</td>
<td>5,27</td>
<td>4.063</td>
<td>2,63</td>
<td>0,00</td>
<td>2,63</td>
</tr>
<tr>
<td>081042A</td>
<td>Pequeños regadíos. Canal de Navarrés</td>
<td>433</td>
<td>5.978</td>
<td>1,66</td>
<td>0,93</td>
<td>2,59</td>
<td>2,989</td>
<td>0,62</td>
<td>0,68</td>
<td>1,29</td>
</tr>
<tr>
<td>081043A</td>
<td>Riegos valle Cárcer y Sellent</td>
<td>1.771</td>
<td>9.504</td>
<td>16,83</td>
<td>0,00</td>
<td>16,83</td>
<td>4.752</td>
<td>8,42</td>
<td>0,00</td>
<td>8,42</td>
</tr>
<tr>
<td>081044A</td>
<td>Pequeños regadíos del Sellent</td>
<td>1.339</td>
<td>6.012</td>
<td>5,18</td>
<td>2,87</td>
<td>8,05</td>
<td>3.006</td>
<td>1,92</td>
<td>2,10</td>
<td>4,03</td>
</tr>
<tr>
<td>081045A</td>
<td>Riegos del Albaida. Vega de Játiva</td>
<td>804</td>
<td>7.586</td>
<td>6,10</td>
<td>0,00</td>
<td>6,10</td>
<td>3.793</td>
<td>3,05</td>
<td>0,00</td>
<td>3,05</td>
</tr>
<tr>
<td>081046A</td>
<td>Riegos de la Font dels Sants</td>
<td>460</td>
<td>7.586</td>
<td>3,49</td>
<td>0,00</td>
<td>3,49</td>
<td>3.793</td>
<td>1,74</td>
<td>0,00</td>
<td>1,74</td>
</tr>
<tr>
<td>081047A</td>
<td>Riegos del Albaida. Comuna de Enova</td>
<td>2.204</td>
<td>9.836</td>
<td>21,68</td>
<td>0,00</td>
<td>21,68</td>
<td>4.918</td>
<td>10,84</td>
<td>0,00</td>
<td>10,84</td>
</tr>
<tr>
<td>Código U.D.A.</td>
<td>Nombre</td>
<td>Superficie regada (has)</td>
<td>Dotación bruta (m³/ha/año)</td>
<td>Dem. Bruta superf</td>
<td>Vol. Bombeo Bruto (hm³)</td>
<td>Demanda Bruta Total</td>
<td>Dotación neta (m³/ha/año)</td>
<td>Demanda neta superficial</td>
<td>Demanda neta subterránea</td>
<td>Demanda Neta Total</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>081048A</td>
<td>Riegos del Cañoles. Vega de Játiva</td>
<td>428</td>
<td>7.586</td>
<td>3.25</td>
<td>0.00</td>
<td>3.25</td>
<td>3.793</td>
<td>1.62</td>
<td>0.00</td>
<td>1.62</td>
</tr>
<tr>
<td>081049A</td>
<td>R. no trad. V. Albaïda y el Comtat</td>
<td>3.003</td>
<td>9.148</td>
<td>11.77</td>
<td>15.70</td>
<td>27.47</td>
<td>4.574</td>
<td>2.38</td>
<td>11.35</td>
<td>13.74</td>
</tr>
<tr>
<td>081050A</td>
<td>Riegos no trad. La Costera</td>
<td>6.122</td>
<td>7.619</td>
<td>19.99</td>
<td>26.65</td>
<td>46.64</td>
<td>3.810</td>
<td>4.05</td>
<td>19.28</td>
<td>23.32</td>
</tr>
<tr>
<td>081053A</td>
<td>Riegos del Alto Magro</td>
<td>1.644</td>
<td>5.450</td>
<td>5.76</td>
<td>3.20</td>
<td>8.97</td>
<td>3.270</td>
<td>2.38</td>
<td>3.00</td>
<td>5.38</td>
</tr>
<tr>
<td>081054A</td>
<td>R. Trad. Ac. Escalonea y Carcajante</td>
<td>6.776</td>
<td>13.917</td>
<td>94.30</td>
<td>0.00</td>
<td>94.30</td>
<td>4.871</td>
<td>33.01</td>
<td>0.00</td>
<td>33.01</td>
</tr>
<tr>
<td>081054B</td>
<td>R. Trad. Acequia Real del Júcar</td>
<td>18.673</td>
<td>19.481</td>
<td>363.77</td>
<td>0.00</td>
<td>363.77</td>
<td>6.234</td>
<td>116.41</td>
<td>0.00</td>
<td>116.41</td>
</tr>
<tr>
<td>081054C</td>
<td>R. Trad. - Ribera Baja</td>
<td>14.973</td>
<td>17.895</td>
<td>267.94</td>
<td>0.00</td>
<td>267.94</td>
<td>8.947</td>
<td>133.96</td>
<td>0.00</td>
<td>133.96</td>
</tr>
<tr>
<td>081054D</td>
<td>Elevación de agua de la Albufera</td>
<td>589</td>
<td>13.159</td>
<td>7.75</td>
<td>0.00</td>
<td>7.75</td>
<td>6.580</td>
<td>3.88</td>
<td>0.00</td>
<td>3.88</td>
</tr>
<tr>
<td>081054E</td>
<td>R. Subterráneos Ribera</td>
<td>6.501</td>
<td>8.483</td>
<td>0.00</td>
<td>55.15</td>
<td>55.15</td>
<td>6.362</td>
<td>0.00</td>
<td>41.36</td>
<td>41.36</td>
</tr>
<tr>
<td>081055A</td>
<td>Riegos escorrentías, Horta Sud</td>
<td>365</td>
<td>17.122</td>
<td>6.25</td>
<td>0.00</td>
<td>6.25</td>
<td>8.561</td>
<td>3.12</td>
<td>0.00</td>
<td>3.12</td>
</tr>
<tr>
<td>081057A</td>
<td>Canal Júcar-Turia M.D.</td>
<td>12.188</td>
<td>7.257</td>
<td>35.38</td>
<td>53.07</td>
<td>88.45</td>
<td>5.443</td>
<td>22.17</td>
<td>44.17</td>
<td>66.34</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>193.634</td>
<td>8.845</td>
<td>1041.43</td>
<td>671.20</td>
<td>1,712.63</td>
<td>5.026</td>
<td>437.87</td>
<td>535.34</td>
<td>973.20</td>
</tr>
</tbody>
</table>

Tabla 15. Demandas agrarias de la cuenca del Júcar desagregadas por UDAs en hm³. Para el año 2.000 (DGOH,2001)
En la Figura 56 se esquematiza el reparto de la demanda agraria total entre los dos sistemas (1.712,63 hm3 del Júcar y 450,80 hm3 del Turia) de los que el 60 % en el Júcar y el 67% en el Turia son suministrados con agua de origen superficial.

![Figura 56. Demandas agrarias según sistema de explotación](image)

<table>
<thead>
<tr>
<th>Sistema</th>
<th>PHJ (1998)3</th>
<th>DGOH 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turia</td>
<td>460,7</td>
<td>450,8</td>
</tr>
<tr>
<td>Júcar</td>
<td>1.645,5</td>
<td>1.712,6</td>
</tr>
<tr>
<td>Total</td>
<td>2.106,2</td>
<td>2.163,4</td>
</tr>
</tbody>
</table>

3 La demanda bruta que establece el PHJ en rigor es de 465.63 hm3 en el caso del Turia y de 1038.57 hm3 en el caso del Júcar, sin embargo en el ámbito del estudio DGOH 2001 se depura la manera de obtener dichas demandas, eliminando algunos municipios que no pertenecia a la CHJ, añadiendo algunos que se habían omitido etc. Por dicho motivo se ha considerado pertinente el comparar las demandas obtenidas en la actualidad con las que se darían en el plan si se hubiese utilizado la metodología actual.
4.1.3 Unidades de demanda industrial UDIs.

Los usos industriales que se van a describir se refieren a las industrias sin conexión a las redes de abastecimiento. La demanda industrial total estaría compuesta por la demanda de estas industrias más la fracción de uso industrial comprendida en el abastecimiento a poblaciones.

La estimación de las demandas se realiza en base al estudio (DGOH 2001), donde se estiman las mismas a partir de datos de las personas ocupadas y consumos teóricos en una año base por sectores económicos, lo que daría una demanda teórica para el conjunto de la cuenca del Júcar de 147,12 hm3/año. Si a esto se le añade la demanda consuntiva de la Central Nuclear de Cofrentes, con 23,65 hm3/año, la demanda total industrial ascendería a 170,77 hm3/año.

El problema de obtener así la demanda industrial es que no se tiene distinción de la fuente de suministro: sea la red municipal o se trate de fuentes propias de suministros, lo que llevaría a contabilizar dos veces la misma demanda.

También hay que tener en cuenta que la demanda industrial abastecida desde las redes municipales queda asumida en las dotaciones utilizadas para el cálculo de la demanda urbana.

La estimación de la demanda industrial satisfecha mediante fuentes propias se ha extraído de (DGOH 2001) donde se obtiene la misma a partir de las cifras dadas por la Declaración de Producción de Aguas Residuales realizadas por la Entidad de Saneamiento de Aguas Residuales de la Comunidad Valenciana del año 2000 y la Comisaría de Aguas de la Confederación Hidrográfica del Júcar.

Los volúmenes estimados de demanda industrial para el sistema de explotación Turia son de 21,15 hm3/año, frente a los 30 hm3/año que suponía el Plan de cuenca (CHJ, 1998)

En cuanto al sistema Júcar las demandas industriales son de 73,82 hm3/año según (DGOH, 2001) mucho mayores que los 43,00 hm3/año previstos por el Plan de cuenca (CHJ, 1998).

Los mayores demandas industriales procedentes de fuentes propias son la demanda asociada a la central nuclear de Cofrentes, con 23,65 hm3/año, y las del Polígono
industrial de Campollano de Albacete que, suponiendo que consumen su máximo concesional durante 220 días de trabajo al año serían 6,78 hm3/año.

![Diagrama de Demanda Industrial](image)

Figura 57. Volúmenes estimados de demanda industrial (en hm3/año)

<table>
<thead>
<tr>
<th></th>
<th>PHJ (Datos 1991)</th>
<th>DGOH 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turia</td>
<td>30,00</td>
<td>21,15</td>
</tr>
<tr>
<td>Júcar</td>
<td>43,00</td>
<td>73,82</td>
</tr>
<tr>
<td>Total</td>
<td>73,00</td>
<td>94,97</td>
</tr>
</tbody>
</table>

Tabla 17. Volúmenes estimados de demanda industrial en hm3/año según las previsiones del Plan Hidrológico del Júcar y DGOH 2001
4.1.4 Resumen

En la Figura 58 puede verse la distribución de las demandas de agua en las cuencas del Júcar y Turia. En ellas se puede ver como los mayores usos de agua son destinados a la agricultura, hecho que cobra mayor relevancia en la cuenca del Júcar.

![Usos sectoriales](image)

Figura 58. Distribución de las demandas consuntivas por sectores en hm\(^3\) en las cuencas del Júcar y Turia.

En la Tabla 18 se pueden ver los datos de demandas para cada sector según (DGOH, 2001)

<table>
<thead>
<tr>
<th></th>
<th>Urbana</th>
<th>Agrícola</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turia</td>
<td>109,82</td>
<td>450,81</td>
<td>21,15</td>
</tr>
<tr>
<td>Júcar</td>
<td>207,9</td>
<td>1.712,63</td>
<td>73,82</td>
</tr>
<tr>
<td>Total</td>
<td>317,72</td>
<td>2.163,44</td>
<td>94,97</td>
</tr>
</tbody>
</table>

En la demanda agregada se puede comprobar como el 84 % de la demanda total, unos 2.163,44 hm\(^3\), están destinados al uso agrario.
4.2 SUMINISTROS SUPERFICIALES EN LAS CUENCAS DE LOS RÍOS JÚCAR Y TURIA

Seguidamente se realiza la revisión de los suministros de agua superficial realizados a las principales unidades de demanda urbana y agrícola en los sistemas Turia y Júcar, caracterizando el volumen de demanda bruta de cada una de estas unidades así como su distribución mensual.

4.2.1 Suministros a las demandas del río Turia

En este apartado se aporta un resumen de los suministros a las demandas del sistema de recursos hídricos del río Turia basándose, fundamentalmente, en los datos recogidos en el ámbito de este estudio y en el informe “Análisis y Revisión de los principales suministros superficiales del río Turia” (OPH, 2001c).

Las demandas consideradas en el presente estudio son las demandas consuntivas que utilizan recursos superficiales de la cuenca del río Turia. En la Tabla 19 se resumen las demandas urbanas y agrícolas analizadas.

<table>
<thead>
<tr>
<th>Demandas Urbanas</th>
<th>Abastecimiento a Teruel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abastecimiento a Valencia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demandas Agrícolas</th>
<th>Riegos del Canal Campo del Turia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Riegos de Pueblos Castillo</td>
</tr>
<tr>
<td></td>
<td>Villamarchante</td>
</tr>
<tr>
<td></td>
<td>Benaguacil</td>
</tr>
<tr>
<td></td>
<td>Lorca</td>
</tr>
<tr>
<td></td>
<td>Riegos de la Acequia de Moncada</td>
</tr>
<tr>
<td></td>
<td>Riegos Tradicionales de la Vega del Turia</td>
</tr>
</tbody>
</table>

Tabla 19. Demandas analizadas en el estudio.

En el anejo C1 del presente documento se contiene de forma detallada, el análisis de estas demandas.
4.2.1.1 Demandas urbanas

En el sistema Turia se tienen dos demandas urbanas: el abastecimiento a la ciudad de Teruel desde el embalse de Arquillo de San Blas y el de la ciudad de Valencia desde su toma en Manises.

Se dispone de información mensual del abastecimiento urbano de Teruel, a través de la estación SAIH E-309. En la Figura 59 se contrastan los volúmenes anuales derivados con la concesión otorgada para abastecimiento de Teruel de 90 l/s, que es una concesión de 1964 inscrita en el “Libro Registro auxiliar A de aprovechamientos de aguas públicas” (Nº Inscripción 40721 Tomo 23/101 nº aprovechamiento 112 nº 1).

![Figura 59. Volumen derivado al abastecimiento de Teruel, Estación SAIH E-309.](image)

La demanda urbana de Valencia y su área metropolitana desde el río Turia queda fijada en el Plan Hidrológico de Cuenca del Júcar (CHJ, 1998) en un 1 m³/s, teniendo un valor anual de 31,5 hm³. Para analizar los volúmenes derivados a dicho abastecimiento se dispone de datos proporcionados por la empresa gestora del mismo, a partir de enero de 1988 hasta la fecha actual.

En la Figura 60 aparecen los volúmenes tomados desde el río Turia para el abastecimiento de Valencia, comparado con dicha asignación de recursos que establece el Plan Hidrológico de Cuenca. En esta figura se aprecia que los volúmenes tomados desde el río Turia han descendido fuertemente en los últimos años, lo cual se debe a que el agua procedente del río Turia es de inferior calidad al agua procedente del río Júcar y por este motivo la empresa gestora prefiere la utilización de aguas procedentes del río Júcar a través del Canal Júcar-Turía.
4.2.1.2 Demandas agrícolas

Se analizan a continuación las demandas agrícolas de:

- Riegos del Canal Campo del Turia
- Riegos de Pueblos Castillo, que engloba a las acequias de Villamarchante, Benaguacil y Lorca
- Riegos Tradicionales de la acequia de Moncada
- Riegos Tradicionales de la Vega de Valencia

Las demandas agrícolas del sistema del Turia son en su mayoría riegos tradicionales con eficiencias bajas (entre 0,3 y 0,5) debido al sistema de riego por gravedad. Frente al carácter tradicional destaca la falta de datos de suministro en algunas de las acequias existentes.
En la Tabla 20 y la Tabla 21 se muestran los valores de superficies, dotaciones, eficiencias y evolución mensual.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Superficie estudios</th>
<th>Superficie * regada 2000</th>
<th>Dotación Neta</th>
<th>Demanda Neta</th>
<th>Demanda Bruta</th>
<th>Eficiencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo del Turia</td>
<td>18.905</td>
<td>20.861</td>
<td>4118</td>
<td>93,4</td>
<td>125,1</td>
<td>0,75</td>
</tr>
<tr>
<td>Pueblos Castillo</td>
<td>3.900</td>
<td>6.626</td>
<td>4118</td>
<td>16,06</td>
<td>51,88</td>
<td>0,310</td>
</tr>
<tr>
<td>Acequia de Moncada</td>
<td>5.496</td>
<td>5.398</td>
<td>5086</td>
<td>27,82</td>
<td>80,85</td>
<td>0,344</td>
</tr>
<tr>
<td>Riegos Tradicionales</td>
<td>5.358</td>
<td>6.597</td>
<td>5086</td>
<td>27,25</td>
<td>80,15</td>
<td>0,34</td>
</tr>
</tbody>
</table>

Tabla 20 Características de las demandas

Dato procedente de (DGOH, 2001)

<table>
<thead>
<tr>
<th>Nombre/(hm³/mes)</th>
<th>oct</th>
<th>nov</th>
<th>dic</th>
<th>ene</th>
<th>feb</th>
<th>mar</th>
<th>abr</th>
<th>may</th>
<th>jun</th>
<th>jul</th>
<th>ago</th>
<th>sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo del Turia</td>
<td>5,14</td>
<td>3,38</td>
<td>3,13</td>
<td>2,89</td>
<td>2,88</td>
<td>5,34</td>
<td>6,35</td>
<td>9,75</td>
<td>10,3</td>
<td>13,56</td>
<td>13,93</td>
<td>8,34</td>
</tr>
<tr>
<td>Pueblos Castillo</td>
<td>4,02</td>
<td>2,49</td>
<td>2,81</td>
<td>2,59</td>
<td>2,61</td>
<td>4,88</td>
<td>3,93</td>
<td>5,29</td>
<td>5,14</td>
<td>5,97</td>
<td>6,24</td>
<td>5,91</td>
</tr>
<tr>
<td>Acequia de Moncada</td>
<td>3,54</td>
<td>2,02</td>
<td>3,54</td>
<td>3,14</td>
<td>3,16</td>
<td>7,11</td>
<td>7,69</td>
<td>8,65</td>
<td>9,21</td>
<td>11,24</td>
<td>11,24</td>
<td>10,31</td>
</tr>
<tr>
<td>Riegos Tradicionales</td>
<td>3,02</td>
<td>0,74</td>
<td>1,66</td>
<td>1,34</td>
<td>2,54</td>
<td>5,62</td>
<td>6,17</td>
<td>9,72</td>
<td>13,5</td>
<td>17,18</td>
<td>13,4</td>
<td>5,29</td>
</tr>
</tbody>
</table>

Tabla 21 Distribución mensual de las demandas

Resumen de las características de cada una de las demandas:

1. La demanda del Canal Campo del Turia corresponde a riegos de la margen izquierda del río Turia que se abastecen con toma en el embalse de Benagéber y que complementan sus dotaciones de riego con la extracción de aguas subterráneas. Estos riegos comenzaron en 1970. Se dispone de datos de la estación de aforos E-220 desde 1994/95 hasta la actualidad así como del Área de Explotación de la Confederación Hidrográfica del Júcar (en adelante AE-CHJ) desde 1979/80. Para la estimación de la demanda se supone un 15% de pérdidas en la conducción principal.

2. La demanda de Pueblos Castillo, corresponde a una zona ubicada en la margen izquierda del río con sus tomas aguas abajo del embalse de Loriguilla. Está compuesta por las acequias de Villamarchante, Benaguacil y Lorca de las cuales se tienen mediciones de las estaciones de aforo E-222, E-223 y E-224 desde agosto de 1994. Por otra parte el SAIH tiene medidas de las acequias de Villamarchante y Lorca desde enero de 1998 mediante las estaciones E-222 y E-224. Se considera la demanda del año 1996/97 como representativa. En ese año la demanda de Pueblos Castillo derivó un 64% respecto al volumen derivado por la acequia de Moncada. Para estimar las derivaciones a la zona de Pueblos Castillo en el periodo 1970/71 a
1993/94 se supone que se mantiene ese porcentaje respecto a la Acequia de Moncada.

4. Los riegos tradicionales de la Vega de Valencia están suministrados por las acequias de Quart, Favara, Rascanya, Tormos, Mislata, Mestalla y Rovella. Se disponen de datos desde 1970/71 de las estaciones de aforo E-63 Tormos, E-69 Mislata, E-82 Quart y E-84 Mislata. Además el AE-CHJ dispone datos de la demanda global desde 1994. Por otra parte, se supone una eficiencia similar a la zona de la Acequia de Moncada por tratarse del mismo tipo de prácticas de riego.

Respecto a los suministros realizados a las zonas regables, puede verse en la Figura 61 el resumen de los volúmenes registrados por la estación de aforos E-220 a los riegos del Canal Campo del Turia, comparado con el volumen medio de los últimos 10 años.

![Figura 61. Suministros históricos al Canal Campo del Turia](image)

En la Figura 62 puede verse el resumen de los volúmenes derivados a las demandas de Pueblos Castillo, donde la trama rayada se corresponde a los volúmenes obtenidos por correlación con los suministros a la Acequia de Moncada, y el resto a los datos registrados por las estaciones foronómicas: E-222 acequia de Villamarchante, E-223...
acequia de Benaguacil y E-224 acequia de Lorca. Todo ello se contrasta con la demanda establecida en el estudio (OPH 2001c).

Figura 62. Suministros históricos a la demanda de Pueblos Castillo.

Los suministros realizados a los riegos tradicionales de la acequia de Moncada se muestran en la Figura 63, donde se contrastan los suministros históricos medidos por la estación de aforos E-52, coincidentes con los datos proporcionados por el Área de Explotación, y el valor finalmente establecido para dicha demanda en el estudio (OPH 2001c) para la situación actual, 80,85 hm\(^3\)/año, y el valor de demanda futura definido en el Plan de Reutilización de las Aguas Residuales del Área Metropolitana de Valencia (PRARV), 60,14 hm\(^3\)/año. En dicha figura se aprecia como la demanda actual se aproxima a las previsiones establecidas en el PRARV.

Figura 63. Suministros históricos a la Acequia de Moncada.
Finalmente, en la Figura 64, aparecen los suministros históricos a los riegos tradicionales de La Vega de Valencia, formado por las siete acequias del Tribunal de las Aguas, según datos del Área de Explotación, y comparados con la demanda establecida en el estudio (OPH 2001c), 80,15 hm3/año, y en el Plan de Reutilización de Aguas Residuales (PRARV), 71,34 hm3/año.

Figura 64. Suministros históricos a los riegos tradicionales de la Vega de Valencia.
4.2.2 Suministros a las demandas del río Júcar

El sistema del Júcar está caracterizado por un uso del agua principalmente agrícola, siendo el suministro urbano de menor entidad en magnitud pero de gran importancia ya que de él se abastecen las poblaciones de Albacete, Cuenca, la mayor parte de Valencia y parte de Sagunto.

Para el análisis de los suministros a las demandas urbanas y agrícolas se ha recogido la información contenida en el informe “Análisis y revisión de los principales suministros superficiales del río Júcar” (OPH, 2001d).

Por otro lado en el informe “Implantación en la Confederación Hidrográfica del Júcar de Herramientas de Decisión en materia de Explotación de Recursos Hídricos” (DIHMA, 2001) se recoge un estudio de los datos diarios del Área de Explotación de las demandas agrícolas de la cuenca media y baja del río Júcar desde el año 1987.

Las demandas consideradas en el presente documento, son las demandas consuntivas que utilizan recursos hídricos superficiales de la cuenca del río Júcar. En la Tabla 22 se resumen las demandas urbanas y agrícolas analizadas.

<table>
<thead>
<tr>
<th>Demandas Urbanas</th>
<th>Abastecimiento a Albacete (próxima puesta en servicio)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abastecimiento a Sagunto (en servicio)</td>
</tr>
<tr>
<td></td>
<td>Abastecimiento a Valencia</td>
</tr>
<tr>
<td>Demandas Industriales</td>
<td>Refrigeración Central Nuclear de Cofrentes</td>
</tr>
<tr>
<td>Trasvases</td>
<td>Trasvase a la Marina Baja</td>
</tr>
<tr>
<td>Demandas Agrícolas</td>
<td>Riegos del Canal Júcar-Turia</td>
</tr>
<tr>
<td></td>
<td>Riegos Tradicionales de la Ribera del Júcar</td>
</tr>
<tr>
<td></td>
<td>Acequia Real del Júcar</td>
</tr>
<tr>
<td></td>
<td>Acequia de Antella</td>
</tr>
<tr>
<td></td>
<td>Acequia de Escalona</td>
</tr>
<tr>
<td></td>
<td>Acequia de Carcagente</td>
</tr>
<tr>
<td></td>
<td>Acequia de Cuatro Pueblos</td>
</tr>
<tr>
<td></td>
<td>Acequia de Sueca</td>
</tr>
<tr>
<td></td>
<td>Acequia de Cullera</td>
</tr>
</tbody>
</table>

Tabla 22. Demandas superficiales del sistema Júcar.

En el anejo C2 se puede ver de forma detallada esta información.
4.2.2.1 Demandas urbanas

En el estudio del río Júcar se localizan fundamentalmente tres demandas urbanas: el abastecimiento de Albacete, el de Sagunto y el de Valencia. Actualmente no se encuentra en funcionamiento el abastecimiento de Albacete (la instalación ha sido construida y se encuentra en fase de pruebas, en verano de 2002), de forma que únicamente se analizará el abastecimiento urbano de la ciudad de Valencia y Sagunto.

Desde el Canal Júcar-Turia se realiza parte del suministro de abastecimiento del área metropolitana de Valencia, pudiéndose realizar a través de las potabilizadoras de Picassent y de Manises. Se dispone de información mensual desde octubre de 1988 sobre los volúmenes tomados desde el Canal. Dicha información ha sido proporcionada por la empresa gestora del abastecimiento.

En la Figura 65 se realiza el contraste entre los volúmenes tomados desde el Canal y la asignación del Plan Hidrológico de cuenca del Júcar, que se establece en 3 m³/s (94,6 hm³/año). Se observa que el volumen consumido se encuentra muy próximo al establecido en el Plan llegando a superarlo en el último año.

Figura 65: Volumen anual tomado del Canal Júcar-Turia para el abastecimiento del Área Metropolitana de Valencia.
Desde el Canal Júcar-Turia se realiza parte del suministro de abastecimiento del área de Sagunto. La puesta en servicio de la conducción que enlaza el Canal con los depósitos de abastecimiento de Sagunto se inicia en julio de 2000, siendo el volumen asignado por el Plan Hidrológico de Cuenca del Júcar para el abastecimiento urbano e industrial del área de Sagunto de 1 m3/s (31,54 hm3/año)

Por Junta de Gobierno 2/2000 de 25 de Septiembre de 2000, se autoriza en precario un caudal mínimo de 200 l/s para abastecimiento de Sagunto

![Figura 66: Volumen anual tomado del Canal Júcar-Turia para el abastecimiento del Área Metropolitana de Sagunto comparado con el caudal mínimo autorizado en precario y el volumen asignado en el PHJ.](image-url)
4.2.2.2 Demanda industrial, Central Nuclear de Cofrentes

El principal uso consuntivo industrial existente en la cuenca del río Júcar, no incluido en las redes de abastecimiento de los núcleos de población, es la refrigeración de la central Nuclear de Cofrentes.

Se dispone de datos de volúmenes tomados, vertidos y el consumo de la Central Nuclear de Cofrentes, procedentes de la Comisaría de Aguas de la Confederación Hidrográfica del Júcar desde el año 1992/93 hasta el año 2000/01. Estos datos se contrastan con la asignación máxima establecida por el Plan Hidrológico de Cuenca del Júcar, que se establece en un consumo máximo de 20 hm3/año.

El volumen consumido por la central nuclear de Cofrentes se obtiene como diferencia entre el volumen tomado y retornado.

De la Figura 67 destaca el ligero aumento en el consumo producido en el último año el cual se debe al incremento en la producción de energía eléctrica que ha tenido la central.
4.2.2.3 Demandas agrícolas

Las principales demandas agrícolas del sistema Júcar, que utilizan aguas superficiales, se encuentran ubicadas todas ellas aguas abajo del embalse de Tous y son (véase la Figura 44):

- Los Riegos del Canal Júcar Turia
- Los Riegos tradicionales del Júcar
 - Acequias superiores:
 - Acequia Real del Júcar
 - Acequia de Antella
 - Acequia de Escalona
 - Acequia de Carcaixent
 - Acequias inferiores:
 - Acequia de Cuatro Pueblos
 - Acequia de Sueca
 - Acequia de Cullera
En primer lugar, respecto del Canal Júcar Turía, se obtienen los volúmenes derivados a los Riegos del Canal Júcar-Turía junto con las pérdidas del propio Canal como diferencia entre las entradas al canal menos los vertidos de este al río Turía y el volumen tomado para el abastecimiento de Valencia (datos procedentes del Área de Explotación de CHJ). Dicho resultado aparece en la Figura 68, contrastado con las concesiones materializadas hasta la fecha para la margen derecha del Canal, de 81,27 h m3/año, sobre una asignación que establece el Plan para los Riegos del Canal Júcar-Turía de 95 h m3/año incluyendo las futuras concesiones de la margen izquierda.

Figura 68: Volumen anual consumido en el Canal Júcar-Turía, engloba las derivaciones a los Riegos del Canal y las pérdidas del mismo.
Respecto a los riegos tradicionales del Júcar, en la Figura 69 aparecen los volúmenes derivados anualmente por todas las acequias de Riegos Tradicionales del Júcar. Dicha información procede del Área de Explotación de la Confederación Hidrográfica del Júcar (salvo los datos correspondientes a la Acequia Real del Júcar para la cual se utiliza la estación de aforos E-61), y se compara con el volumen establecido por el Plan de Cuenca (725 hm3/año) y con el volumen registrado por la estación de aforos E-61 y las estaciones del SAIH en el resto de acequias (en este caso destaca que no existe ninguna estación de aforos o SAIH en la toma de la margen izquierda de los riegos de Cullera, por lo cual la suma total es inferior a los datos del Área de Explotación).

![Figura 69: Volumen anual derivado por los Riegos Tradicionales del río Júcar.](image-url)
Para conseguir dichos suministros en los riegos tradicionales del Júcar se han realizado en los últimos años unas sueltas del embalse de Tous de aproximadamente 500 hm3 registradas por la estación de aforos E-42 (Figura 70).

![Figura 70: Volumen anual de salidas de Tous al río Júcar](image1)

De las anteriores salidas del embalse, una parte, aproximadamente 145 hm3 pasa el azud de Antella con destino a los riegos de la Ribera Baja, tal y como se muestra en la Figura 71.

![Figura 71. Volumenes anuales que sobrepasan el Azud de Antella con destino a los riegos de la Ribera Baja.](image2)
Comparando los suministros a dichos riegos, desglosado por acequias superiores e inferiores (Ribera Alta y Baja), con los volúmenes establecidos por el Plan de Cuenca (446 hm\(^3\)/año y 279 hm\(^3\)/año respectivamente), Figura 72 y Figura 73, se aprecia un mayor volumen derivado a las acequias inferiores que a las superiores, lo cual se debe a la existencia de retornos de riego de las acequias superiores a las inferiores y a que estas últimas cuentan a su vez con las aportaciones naturales del tramo final del Júcar, mejorándose así su garantía.

![Figura 72: Volumen anual derivado a las acequias superiores de los Riegos Tradicionales del río Júcar.](image1)

![Figura 73: Volumen anual derivado a las acequias inferiores de los Riegos Tradicionales del río Júcar.](image2)
4.2.2.4 Trasvases a otras cuencas y transferencias

Debido a que el río Júcar en el embalse de Alarcón constituye un elemento de paso de los volúmenes derivados por el Acueducto Tajo Segura (ATS), debe analizarse el caudal derivado por el ATS según diferentes fuentes. En la Figura 74 se muestran los datos de caudales circulantes por el ATS en Belmontejo (entradas al río Júcar) y en Picazo, (salidas del río Júcar) obtenidos del Área de Explotación de la Confederación Hidrográfica del Júcar. Las salidas al ATS obtenidas como diferencia de aforos entre la E-107 y la E-129, y los datos registrados por la estación SAIH E-238 “Entradas al ATS” información suministrada por la Confederación Hidrográfica del Tajo.

Figura 74: Caudales circulantes por el ATS comparado con los registros foronómicos en el río Júcar.

Por otra parte, desde el año 1999 se realizan transferencias de agua de la cuenca del río Júcar al sistema de la Marina Baja. Estos volúmenes se conducen desde el embalse de Alarcón siguiendo el siguiente recorrido:

- Utilización del Acueducto Tajo-Segura
- Posteriormente circula por las infraestructuras de la Mancomunidad de los Canales del Taibilla
- Y finalmente a través de la conducción Fenollar-Amadorio
Los volúmenes derivados, así como las fechas de aprobación, se detallan en la Tabla 23:

<table>
<thead>
<tr>
<th>Aprobación</th>
<th>Volumen tomado en origen (hm3)</th>
<th>Volumen neto en destino (hm3)</th>
<th>Pérdidas (hm3)</th>
<th>Fecha final trasvase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolución Presidencia 24/5/1999</td>
<td>5,5</td>
<td>3,6</td>
<td>1,9</td>
<td>31/3/2000</td>
</tr>
<tr>
<td>Autorización Presidencia 5/11/1999</td>
<td>3,6</td>
<td>3</td>
<td>0,6</td>
<td>31/3/2000</td>
</tr>
<tr>
<td>1/2000 Junta Gobierno 4/4/2000</td>
<td>8,8</td>
<td>7,5</td>
<td>1,3</td>
<td>31/12/2000</td>
</tr>
<tr>
<td>1/2001 Junta Gobierno 21/2/2001</td>
<td>11,7</td>
<td>10,0</td>
<td>1,7</td>
<td>31/12/2001</td>
</tr>
</tbody>
</table>

Tabla 23. Volúmenes derivados al sistema de la Marina Baja

Desde el año 2001 se realizaron transferencias de agua de la cuenca del río Júcar para la sustitución de bombeos en la Mancha Oriental. Estos volúmenes se conducen desde el embalse de Alarcón utilizando el Acueducto Tajo-Segura. Los volúmenes derivados, así como las fechas de aprobación, se detallan en la Tabla 24:

<table>
<thead>
<tr>
<th>Aprobación</th>
<th>Máximo autorizado (hm3)</th>
<th>Materializado (hm3)</th>
<th>Fecha final trasvase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolución Presidencia 10/7/2001</td>
<td>15,0</td>
<td>10,55</td>
<td>31/12/2001</td>
</tr>
</tbody>
</table>

Tabla 24. Volúmenes derivados para la sustitución de Bombeos en la Mancha Oriental.

El volumen destinado a la sustitución de bombeos de la Mancha Oriental con agua procedente del Júcar (sustitución) correspondiente al año 2000/2001 se fijaba en 15 hm3, aunque han sido derivados 10,6 hm3, mientras que con agua procedente del ATS se fijaba en 7,7 hm3 (compensación) repartidos para las distintas comunidades de usuarios de la forma indicada en la Tabla 25.

El agua con destino a los riegos de la Mancha Oriental y procedente del Acueducto Tajo Segura, se corresponde con el volumen de compensación a determinados riegos tradicionales de la Mancha, debido al drenaje del acuífero producido por la construcción del túnel del ATS.

<table>
<thead>
<tr>
<th></th>
<th>Sustitución</th>
<th>Compensación</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asignado</td>
<td>Tomado</td>
<td>Asignado</td>
</tr>
<tr>
<td>Comunidad de Regantes</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Santa Ana y El Tesoro</td>
<td>2,15</td>
<td>1,77</td>
<td>1,31</td>
</tr>
<tr>
<td>Príncipe de España</td>
<td>8,31</td>
<td>4,97</td>
<td>3,64</td>
</tr>
<tr>
<td>El Salobral</td>
<td>4,14</td>
<td>3,39</td>
<td>2,58</td>
</tr>
<tr>
<td>Los Anguijes</td>
<td>0,40</td>
<td>0,42</td>
<td>0,16</td>
</tr>
<tr>
<td>Total comunidades</td>
<td>15,00</td>
<td>10,56</td>
<td>7,70</td>
</tr>
</tbody>
</table>

Tabla 25. Reparto de los volúmenes de agua (hm3) destinados a la zona de riego de la Mancha Oriental en el año 2000/2001.
Finalmente, en la Tabla 26 aparecen conjuntamente los volúmenes correspondientes a derivaciones desde el río Júcar para el abastecimiento urbano de la Marina Baja, a derivaciones del río Júcar para el abastecimiento urbano de la zona de Alicante (vía Mancomunidad de los canales del Taibilla), y al suministro a la zona de riegos de la Mancha Oriental con agua procedente del río Júcar y del Acueducto Tajo Segura (ATS):

<table>
<thead>
<tr>
<th>Destino</th>
<th>Origen</th>
<th>2000/2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marina Baja</td>
<td>Júcar</td>
<td>11,7</td>
</tr>
<tr>
<td>Taibilla</td>
<td>Júcar</td>
<td>6,5</td>
</tr>
<tr>
<td>La Mancha</td>
<td>Júcar</td>
<td>10,558</td>
</tr>
<tr>
<td>Total a La Mancha</td>
<td></td>
<td>18,258</td>
</tr>
<tr>
<td>Total</td>
<td>Júcar</td>
<td>28,758</td>
</tr>
</tbody>
</table>

Tabla 26. Volúmenes derivados por el trasvase Tajo Segura en hm3.

4.2.2.5 Resumen de los suministros en los últimos años.

En la Tabla 27 se adjuntan los valores anuales de las principales demandas de aguas superficiales de la cuenca del Júcar, así como el volumen de agua circulado por el ATS.

<table>
<thead>
<tr>
<th>Año Hidrológico</th>
<th>Abast. Valencia</th>
<th>Riegos Tradicionales</th>
<th>Canal Júcar-Turia</th>
<th>Consumo C.N. Cofrentes</th>
<th>ATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990-91</td>
<td>62,39</td>
<td>1006,25</td>
<td>55,96</td>
<td></td>
<td>312,11</td>
</tr>
<tr>
<td>1991-92</td>
<td>68,56</td>
<td>855,56</td>
<td>69,68</td>
<td></td>
<td>262,38</td>
</tr>
<tr>
<td>1992-93</td>
<td>59,47</td>
<td>799,64</td>
<td>79,41</td>
<td>17,36</td>
<td>187,37</td>
</tr>
<tr>
<td>1993-94</td>
<td>65,31</td>
<td>644,97</td>
<td>80,32</td>
<td>14,34</td>
<td>243,57</td>
</tr>
<tr>
<td>1994-95</td>
<td>51,62</td>
<td>380,36</td>
<td>42,16</td>
<td>15,60</td>
<td>188,13</td>
</tr>
<tr>
<td>1995-96</td>
<td>82,11</td>
<td>509,64</td>
<td>43,53</td>
<td>17,51</td>
<td>332,59</td>
</tr>
<tr>
<td>1996-97</td>
<td>88,13</td>
<td>748,44</td>
<td>51,86</td>
<td>17,98</td>
<td>464,99</td>
</tr>
<tr>
<td>1997-98</td>
<td>89,33</td>
<td>820,89</td>
<td>53,98</td>
<td>17,15</td>
<td>454,06</td>
</tr>
<tr>
<td>1998-99</td>
<td>88,09</td>
<td>728,35</td>
<td>52,48</td>
<td>16,80</td>
<td>579,49</td>
</tr>
<tr>
<td>1999-00</td>
<td>89,60</td>
<td>642,81</td>
<td>40,30</td>
<td>17,02</td>
<td>583,41</td>
</tr>
<tr>
<td>2000-01</td>
<td>103,60</td>
<td>670,60</td>
<td>41,51</td>
<td>19,19</td>
<td>546,80</td>
</tr>
<tr>
<td>Asignación PHJ</td>
<td>94,66</td>
<td>725,00</td>
<td>20,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concesiones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81,27</td>
</tr>
</tbody>
</table>

Tabla 27. Evolución de los suministros superficiales en el sistema del río Júcar (hm3/año).
4.2.2.6 Caracterización de las demandas agrícolas de aguas superficiales a partir de Tous

Se estudia a continuación la evolución de los suministros a las demandas a lo largo de los años. De este modo se pueden establecer una serie de años “tipo” que representen diferentes situaciones de consumo de las demandas del sistema.

Canal Júcar-Turia

Esta demanda representa los riegos del canal Júcar-Turia que tiene su toma en el embalse de Tous.

Para el año 1999 se obtiene un valor mínimo de 40,3 hm³, el cual puede ser representativo del suministro mínimo realizable ante una situación de sequía. Además destaca también que la época de 1991 a 1993 se corresponde con los valores más altos.

Riegos tradicionales del Júcar. Acequias superiores

En la Figura 72 de suministros a las acequias superiores se pueden distinguir dos etapas muy bien diferenciadas, antes y después del año 1994/95 (el de menor consumo en todas).

En la primera parte, desde el año 1990 hasta el 1994, en todas las acequias de la Ribera Alta se observa una progresiva disminución del agua suministrada debido quizá al mayor control del río y de los riegos por parte del organismo competente (CHJ) y una disminución de las aportaciones.

Además hay que destacar que para el caso de Antella, Escalona y Carcagente se produce una disminución fuerte en el año 1993. Esto no se produce de forma tan significativa para el caso de la Acequia Real.

Riegos tradicionales del Júcar. Acequias inferiores

Como en el caso de las acequias inferiores se puede dividir el período estudiado en dos etapas diferenciadas antes y después del valor mínimo, que para todas las acequias es el año 1994/95. La primera etapa de suministro abundante corresponde a los primeros años, destacando sobre todo el año 1990 (máximo para las tres acequias). Se observa, también, la progresiva disminución a lo largo de los años, aunque de forma más irregular que en el caso de las acequias superiores, con un gran descenso entre los años.
91 y 92 pero un incremento entre el 92 y 93. Los años 94, 95 y 96 son los que marcan la sequía, representando los tres años de menor suministro.

Tanto para el caso de las Acequias superiores como para las Inferiores el año 1994/95 supone un mínimo en el período de estudio. En los años posteriores se observa un progresivo, pero lento, aumento del suministro por parte de todas las acequias, pero con valores mucho menores que en el período 1990-1992. Esto es debido a un conjunto de efectos de la sequía como son un mayor control del río y de las demandas, una mejora en la gestión de los recursos, una concienciación de los usuarios, etc.

Este período posterior a la sequía se podría considerar como una "situación normal" de la demanda y se considera clave para la estimación de la misma.

En la Figura 75 se puede ver la evolución anual de la suma de las demandas para los mismos años

![Graph](image.png)

Figura 75. Evolución temporal de las demandas agrícolas superficiales a partir del embalse de Tous.

En la Tabla 28 se adjuntan los valores utilizados
<table>
<thead>
<tr>
<th>Año</th>
<th>Oct 94</th>
<th>Nov 94</th>
<th>Dic 94</th>
<th>Ene 95</th>
<th>Feb 95</th>
<th>Mar 95</th>
<th>Abr 95</th>
<th>Mayo 95</th>
<th>Jun 95</th>
<th>Jul 95</th>
<th>Ago 95</th>
<th>Sep 95</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Real y Antella</td>
<td>4.55</td>
<td>4.69</td>
<td>4.83</td>
<td>4.87</td>
<td>5.18</td>
<td>5.44</td>
<td>5.57</td>
<td>5.10</td>
<td>5.30</td>
<td>5.44</td>
<td>5.20</td>
<td>4.95</td>
<td>38.16</td>
</tr>
<tr>
<td>Escalona y Caracagente</td>
<td>3.54</td>
<td>3.61</td>
<td>3.72</td>
<td>3.78</td>
<td>3.92</td>
<td>4.05</td>
<td>4.12</td>
<td>4.18</td>
<td>4.24</td>
<td>4.29</td>
<td>4.20</td>
<td>3.95</td>
<td>32.15</td>
</tr>
<tr>
<td>Cullera y Cuatro Pueblos</td>
<td>3.57</td>
<td>3.62</td>
<td>3.70</td>
<td>3.75</td>
<td>3.80</td>
<td>3.85</td>
<td>3.90</td>
<td>3.95</td>
<td>4.00</td>
<td>4.05</td>
<td>3.90</td>
<td>3.75</td>
<td>30.33</td>
</tr>
<tr>
<td>Sueca</td>
<td>3.56</td>
<td>3.70</td>
<td>3.85</td>
<td>4.00</td>
<td>4.15</td>
<td>4.30</td>
<td>4.45</td>
<td>4.60</td>
<td>4.75</td>
<td>4.90</td>
<td>4.05</td>
<td>3.80</td>
<td>34.00</td>
</tr>
<tr>
<td>Total</td>
<td>13.51</td>
<td>14.46</td>
<td>15.38</td>
<td>15.62</td>
<td>16.40</td>
<td>16.67</td>
<td>17.00</td>
<td>17.35</td>
<td>17.70</td>
<td>18.15</td>
<td>17.05</td>
<td>16.35</td>
<td>140.96</td>
</tr>
</tbody>
</table>

De la tabla y las gráficas anteriores se puede establecer:

- Se puede considerar el año 1994/95 como una situación de suministro mínimo “extremo”. Estos valores sólo se pueden mantener en un año de extrema sequía y de una forma temporal. No se puede considerar mantener estos valores de suministro para más de uno o dos años. Sin embargo, puede servir como cota de suministro “mínimo”.

- El suministro del año 1997/98 se puede considerar como un año con abundancia de recursos en que la sequía parece “lejana” en la memoria de los usuarios. Este suministro es mucho menor que el de finales de los años ochenta pero representa una cota superior en la evolución de los últimos años. Por ello se puede caracterizar como un suministro normal.

- El suministro de los años 1998/99 y 1999/00 se pueden considerar situaciones de transición o intermedias entre un suministro normal (año 1997/98) y uno más restrictivo como el del año 2000/01, especialmente para las acequias superiores.

- El suministro del año 2000/01 puede considerarse como un año de suministro restrictivo y de ahorro especialmente para las acequias superiores, pero en el cual los regantes no han tenido problemas. Este año se puede caracterizar como de “suministro óptimo” en el que se hace un uso eficiente del recurso sin perjudicar a ningún usuario.
5 ASPECTOS MEDIOAMBIENTALES
En el ámbito del trabajo objeto del presente documento se ha realizado un análisis de los espacios naturales protegidos que se encuentran en el marco geográfico del estudio y que, en todo caso, han sido respetados de cara a las estrategias de actuación que se pueden consultar en los anexos D.

Se ha efectuado también un análisis de los caudales ecológicos del Plan Hidrológico de Cuenca y de los que realmente se observan en los cauces en los últimos años, con el fin de comprobar si son respetados.

5.1 ESPACIOS NATURALES PROTEGIDOS EN EL ÁMBITO GEOGRÁFICO DEL ESTUDIO

A continuación se resume el resultado de la revisión de todos los espacios naturales protegidos existentes en las cuencas de los ríos Júcar y Turia.

Para ello, se indica a nivel internacional, europeo, nacional y autonómico, cuales son las figuras de protección existentes y se enumeran los espacios y las disposiciones que específicamente los declararon como tales.

5.1.1 Espacios protegidos por disposiciones internacionales

La organización de las Naciones Unidas, por medio de la UNESCO ha declarado, entre otros espacios protegidos, las Zonas Húmedas de Importancia Internacional, figura que surgió a partir del Convenio RAMSAR.

Este convenio, que fue aprobado el 2 de febrero de 1971, es un tratado intergubernamental sobre los Humedales de Importancia Internacional, conocido como la Convención de RAMSAR. Su objetivo inicial fue la conservación y el uso racional de los humedales, sobre todo como hábitat para aves acuáticas.

El único espacio protegido a nivel internacional en las Cuencas del Júcar y Turia es la Albufera de Valencia, cuya importancia ecológica quedó definitivamente puesta de manifiesto con la incorporación el 8 de mayo de 1990 a la lista de humedales de importancia internacional designados por el Gobierno Español.

Sobre este importante espacio, cabe señalar que está declarado, entre otras figuras de protección, como Parque Natural. Tiene una superficie total de 21.120 hectáreas y se sitúa en el sector sudoriental de la Plana de Valencia. Esta llanura queda enmarcada por elevaciones pertenecientes al Sistema Ibérico y constituye un área, geológicamente deprimida y subsidente, que se ha rellenado con aluviones cuaternarios tras producirse
el cierre del antiguo golfo por un cordón litoral que se extiende desde Valencia hasta Cullera. Esta barra arenosa o restinga tiene su origen en los aportes de sedimentos fluviales procedentes del Turia y distribuidos desde el norte por la corriente de deriva. En el sector meridional, los sedimentos quedan atrapados por las estribaciones próximas al mar de la Serra de Les Raboses de Cullera; ello permite un crecimiento de la barra desde ambos extremos hasta unirse en la zona central y cerrar completamente el golfo primitivo.

Este espacio natural presenta una gran variación de hábitats que permiten la existencia de una diversa flora y fauna. A grandes rasgos se pueden distinguir cuatro grandes ambientes en el contexto de su territorio; la restinga o barra litoral, el marjal, el lago y las zonas de monte. Estos ambientes se pueden estructurar, a su vez, en distintos subambientes de características más homogéneas, tanto en lo relativo a su génesis como a su función ecológica en el conjunto del sistema.

Hoy en día el lago de la Albufera tiene forma irregular, relativamente redonda, con un diámetro máximo de unos 6 km. Se comunica con el mar a través de tres canales, o golas, reguladas artificialmente y que modifican el nivel general de las aguas del lago. La profundidad del lago es escasa, con una media inferior a los 80 cm, aunque en algunos puntos llega a alcanzar los dos metros. El agua de la Albufera es dulce, como consecuencia del cierre de la comunicación con el mar mediante restinga y el aporte de agua fluvial que llevó a un proceso de desalinización.

Figura 76. Mapa de situación del parque natural de L’Albufera
5.1.2 Espacios protegidos por la normativa de ámbito europeo (CEE)

En la cumbre de París de 1972, se estableció como una de las prioridades la protección del medio ambiente. En consecuencia, en 1979 surge la Directiva 79/409/CEE sobre la Conservación de las Aves Silvestres, conocida como Directiva de Aves. En ella, entre otras medidas, se establece la protección de los territorios más adecuados para ellas. Estos espacios son las Zonas de Especial Protección para las Aves (ZEPAs).

Años más tarde, en 1992, la Unión Europea promulga una nueva directiva conocida como Directiva Hábitats, con el objetivo de mantener o restaurar hábitats y especies mediante la creación de una red ecológica europea. Su contenido supone el marco de referencia dentro del cual los Estados miembros deberán contribuir a la creación de la Red Natura 2000 mediante la confección de Listas Nacionales de lugares.

La Red Natura 2000 está compuesta por dos tipos de espacios naturales, por un lado los espacios ya catalogados como ZEPA, en base a la Directiva de Aves y por otro, los Lugares de Interés Comunitario (LIC), que finalmente se convertirán cuando finalice el proceso administrativo en las futuras Zonas Especiales de Conservación (ZEC).

Figura 77. Red Natura 2000 en el ámbito de la confederación Hidrográfica del Júcar (fuente DGOH 2001).
En la Tabla 29 se adjunta un listado de las áreas definidas como ZEPAs en el ámbito territorial de las Cuencas del Júcar y del Túria.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>CA</th>
<th>Área (Km²)</th>
<th>Perímetro (m)</th>
<th>Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>L'Albufera</td>
<td>Valencia</td>
<td>209,32</td>
<td>91573</td>
<td>20932</td>
</tr>
<tr>
<td>Marjal dels Moros</td>
<td>Valencia</td>
<td>5,60</td>
<td>10237</td>
<td>560</td>
</tr>
<tr>
<td>Hoces del Cabriel</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sierra de Martés</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Muela de Cortes</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sierra de Mariola</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serranía de Cuenca</td>
<td>C. L. M.</td>
<td>1283,45</td>
<td>78803</td>
<td>128345</td>
</tr>
<tr>
<td>Hoces del Cabriel, Guadazaón y Ojos de Moya</td>
<td>C. L. M.</td>
<td>393,02</td>
<td>445417</td>
<td>39302</td>
</tr>
<tr>
<td>Hoz del Río Gritos y Páramos de las Valeras</td>
<td>C. L. M.</td>
<td>17,34</td>
<td>21428</td>
<td>1734</td>
</tr>
<tr>
<td>Área Esteparia del Este de Albacete</td>
<td>C. L. M.</td>
<td>120,78</td>
<td>95869</td>
<td>12078</td>
</tr>
</tbody>
</table>

Tabla 29. ZEPAs definidas en el ámbito de las Cuencas de los ríos Júcar y Turia (fuente DGOH 2001).

En la Tabla 30 se adjunta un listado de las áreas definidas como LICs en las cuencas del Júcar y del Turia.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>CA</th>
<th>Área (Km²)</th>
<th>Perímetro (m)</th>
<th>Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serra Calderona</td>
<td>Valencia</td>
<td>178</td>
<td>154942</td>
<td>17773</td>
</tr>
<tr>
<td>Marjal dels Moros</td>
<td>Valencia</td>
<td>-</td>
<td>9188</td>
<td>238</td>
</tr>
<tr>
<td>Puebla de San Miguel</td>
<td>Valencia</td>
<td>88</td>
<td>48703</td>
<td>8845</td>
</tr>
<tr>
<td>Ríos del Rincón de Ademuz</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sabinar de Alpuente</td>
<td>Valencia</td>
<td>58</td>
<td>49761</td>
<td>5753</td>
</tr>
<tr>
<td>Alto Turia</td>
<td>Valencia</td>
<td>-</td>
<td>57172</td>
<td>3803</td>
</tr>
<tr>
<td>Lavajos de Sinarcas</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sierra del Negrete</td>
<td>Valencia</td>
<td>196</td>
<td>150120</td>
<td>19567</td>
</tr>
<tr>
<td>Hoces del Cabriel</td>
<td>Valencia</td>
<td>117</td>
<td>106347</td>
<td>11691</td>
</tr>
<tr>
<td>Sierra de Malacara</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Túnel del Carcalín – Buñol--</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cueva del Barranco Hondo –Cheste--</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sierra Martés y el Ave</td>
<td>Valencia</td>
<td>383</td>
<td>135498</td>
<td>38269</td>
</tr>
<tr>
<td>Muela de Cortes i Caroig</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avenç de les Graelles –Navarrés--</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Valle de Ayora y Sierra del Boquerón</td>
<td>Valencia</td>
<td>174</td>
<td>106347</td>
<td>17431</td>
</tr>
<tr>
<td>Sierra del Mugrón</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cueva Negra – Ayora--</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sima del Pla de les Simes –Ontinyent--</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nombre</td>
<td>CA</td>
<td>Área (Km²)</td>
<td>Perímetro (m)</td>
<td>Ha</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Curs Mitjà i Baix del Xúquer</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cova de la Moneda – Cotes--</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cova de les Meravelles – Llombai--</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Túnel de Canals</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Curs Mitjà del riu Albaida</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serra del Castell de Xàtiva</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cova dels Mosseguellos – Albaida--</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sima de l’Àguila – Picassent--</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L’ Albufera</td>
<td>Valencia</td>
<td>209</td>
<td>91573</td>
<td>21120</td>
</tr>
<tr>
<td>Cap de Cullera</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ullals del riu Verd</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serra de Corbera</td>
<td>Valencia</td>
<td>50</td>
<td>86990</td>
<td>4986</td>
</tr>
<tr>
<td>Cova de les Meravelles (Alzira) -</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Castelfrío – Mas de Tarín -</td>
<td>Valencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Castelfrío-Mas de Tarín -</td>
<td>Aragón</td>
<td>22</td>
<td>20930</td>
<td>2206</td>
</tr>
<tr>
<td>Rodeno de Albarracin -</td>
<td>Aragón</td>
<td>-</td>
<td>33910</td>
<td>3236</td>
</tr>
<tr>
<td>Sierra de Javalambre II -</td>
<td>Aragón</td>
<td>533</td>
<td>240345</td>
<td>53259</td>
</tr>
<tr>
<td>Los Yesares y Laguna de Tortajada -</td>
<td>Aragón</td>
<td>28</td>
<td>23692</td>
<td>2772</td>
</tr>
<tr>
<td>Altos de Marimezquita, los Pinarejos y Muela Cascante</td>
<td>Aragón</td>
<td>33</td>
<td>25105</td>
<td>3272</td>
</tr>
<tr>
<td>Loma de Centellas -</td>
<td>Aragón</td>
<td>9</td>
<td>16269</td>
<td>917</td>
</tr>
<tr>
<td>Sabinar de San Blas</td>
<td>Aragón</td>
<td>50</td>
<td>41726</td>
<td>5029</td>
</tr>
<tr>
<td>Cuenca del Ebrón</td>
<td>Aragón</td>
<td>218</td>
<td>111948</td>
<td>21837</td>
</tr>
<tr>
<td>Sabinares de Saldón y Valdecuenca -</td>
<td>Aragón</td>
<td>92</td>
<td>52629</td>
<td>9218</td>
</tr>
<tr>
<td>Los Cuadrejones-Dehesa del Saladar</td>
<td>Aragón</td>
<td>1</td>
<td>3680</td>
<td>55</td>
</tr>
<tr>
<td>Valdecabriel - Las Tejeras</td>
<td>Aragón</td>
<td>118</td>
<td>70252</td>
<td>11846</td>
</tr>
<tr>
<td>Estrechos del Guadalaviar</td>
<td>Aragón</td>
<td>-</td>
<td>32420</td>
<td>2247</td>
</tr>
<tr>
<td>Sabinar de Monterde de Albarracin</td>
<td>Aragón</td>
<td>140</td>
<td>75458</td>
<td>14019</td>
</tr>
<tr>
<td>Cueva de la Humera</td>
<td>Aragón</td>
<td>0</td>
<td>400</td>
<td>1</td>
</tr>
<tr>
<td>Hoces del Río Júcar</td>
<td>C. L. M.</td>
<td>174</td>
<td>120634</td>
<td>17483</td>
</tr>
<tr>
<td>Lagunas saladas de Pétrola y Salobrejo y Complejo -</td>
<td>C. L. M.</td>
<td>1</td>
<td>4839</td>
<td>146</td>
</tr>
<tr>
<td>Lagunar de Corral Rubio -</td>
<td>C. L. M.</td>
<td>3</td>
<td>8305</td>
<td>340</td>
</tr>
<tr>
<td>Laguna de los Ojos de Villaverde</td>
<td>C. L. M.</td>
<td>5</td>
<td>12439</td>
<td>522</td>
</tr>
<tr>
<td>Rentos de Orchova y vertientes del Turia -</td>
<td>C. L. M.</td>
<td>48</td>
<td>76493</td>
<td>4753</td>
</tr>
<tr>
<td>Sierras de Talayuelas y Aliaguillas</td>
<td>C. L. M.</td>
<td>78</td>
<td>64981</td>
<td>7803</td>
</tr>
<tr>
<td>Sabinares de Campillos-Sierra y Valdemorillo de la Sierra</td>
<td>C. L. M.</td>
<td>137</td>
<td>92543</td>
<td>13654</td>
</tr>
<tr>
<td>Hoces de Alcarcón</td>
<td>C. L. M.</td>
<td>28</td>
<td>35439</td>
<td>2779</td>
</tr>
<tr>
<td>Complejo Lagunar de Arcas</td>
<td>C. L. M.</td>
<td>3</td>
<td>6853</td>
<td>275</td>
</tr>
<tr>
<td>Nombre</td>
<td>CA</td>
<td>Área (Km²)</td>
<td>Perímetro (m)</td>
<td>Ha</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Hoces del Cabriel, Guadazaón y Ojos de Moya</td>
<td>C. L. M.</td>
<td>566</td>
<td>560270</td>
<td>56566</td>
</tr>
<tr>
<td>Serranía de Cuenca</td>
<td>C. L. M.</td>
<td>1853</td>
<td>781009</td>
<td>185348</td>
</tr>
<tr>
<td>Sierra del Santerón</td>
<td>C. L. M.</td>
<td>26</td>
<td>25988</td>
<td>2617</td>
</tr>
</tbody>
</table>

Tabla 30. LICs definidas en el ámbito de la confederación hidrográfica del Júcar (fuente DGOM 2001).

5.1.3 Espacios protegidos dentro del ámbito estatal español

A finales de los 80, se aprueba la LEY 4/1989, de 27 de Marzo, de CONSERVACIÓN DE LOS ESPACIOS NATURALES Y LA FLORA Y FAUNA SILVESTRE, en la que se establecen cuatro figuras para la protección de espacios naturales. Son las Reservas Naturales, los Parques Naturales, los Monumentos Naturales y los Paisajes Protegidos. También se establecen zonas periféricas de protección alrededor de cada espacio con la finalidad de amortiguar los posibles impactos de las actividades desarrolladas en sus alrededores.

A partir de la aprobación de la LEY 3/1995, de 23 de marzo, de VIAS PECUARIAS, estas rutas o itinerarios tradicionalmente ganaderos pasan a recibir cierta protección, no solo por su indiscutible interés ganadero y cultural, sino también por constituir en muchos casos auténticos “corredores ecológicos”, esenciales para la migración, la distribución geográfica y el intercambio genético de especies silvestres.

Las cuencas de los ríos Júcar y Turia abarcan parte de las comunidades autónomas de Castilla La Mancha, Aragón y la Comunidad Valenciana cada una de ellas ha adaptado la ley estatal de Conservación de los Espacios naturales y la Flora y Fauna Silvestre a sus necesidades de protección, mediante la creación de normas con rango de Ley en las que se han establecido sus propias clasificaciones de espacios naturales. La descripción de estas figuras se realiza en el documento Memoria del presente estudio.
5.2 CAUDALES ECOLÓGICOS

Los caudales ecológicos fijados por el Plan Hidrológico del Júcar para las cuencas de los ríos Júcar y Turia son los que pueden verse en este apartado. Estos caudales se han comparado con los datos procedentes del Área de Explotación, con los datos registrados en las estaciones foronómicas del Servicio de Hidrología, y con las estaciones SAIH de la Confederación Hidrográfica del Júcar.

Con el fin de homogeneizar los resultados, se muestran finalmente los gráficos de seguimiento de los caudales ecológicos establecidos por el Plan de Cuenca desde la fecha de aprobación de dicho Plan, por lo cual dicho contraste se inicia a partir de octubre de 1998.

En la Tabla 31 aparece un resumen de los caudales medioambientales establecidos aguas abajo de infraestructuras en el Plan Hidrológico de Cuenca aprobada por “Orden de 13 de agosto de 1999 por la que se dispone la publicación de las determinaciones de contenido normativo del Plan Hidrológico de Cuenca del Júcar, aprobado por el Real Decreto 1664/1998, de 24 de julio (BOE n° 205, de 27.8.99)”, mientras que en la Tabla 32 aparecen los volúmenes de agua reservados por razones medioambientales.

Por la definición de caudal ecológico o caudal natural, únicamente se deben realizar sueltas del embalse con fines ecológicos si al mismo se están produciendo entradas de forma natural. De esta forma el caudal ecológico al cual se está sometido a cumplimiento se define entre el mínimo de las entradas al embalse y el caudal ecológico establecido.

Q ecológico sometido a cumplimiento = Mínimo (Q ecológico, Entradas al embalse)
<table>
<thead>
<tr>
<th>SISTEMA</th>
<th>Embalse</th>
<th>Tramo</th>
<th>Observaciones</th>
<th>caudal</th>
<th>unidad</th>
<th>Salida Embalse</th>
<th>Estación aforo</th>
<th>Datos Area explotación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turia</td>
<td>Benagéber Loriguilla</td>
<td>Entre Benagéber y Loriguilla Entre Loriguilla y retorno CH Chulilla</td>
<td>Todo el año</td>
<td>700</td>
<td>l/s</td>
<td>si</td>
<td>E-147</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>l/s</td>
<td>si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Júcar</td>
<td>Alarcón Contreras</td>
<td>Aguas abajo desde Alarcón Aguas abajo de Contreras</td>
<td>Mantener niveles piezométricos en la Mancha</td>
<td>2</td>
<td>m³/s</td>
<td>si</td>
<td>E-107 y E-129</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>l/s</td>
<td>si</td>
<td>E-130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>l/s</td>
<td>si</td>
<td>E-49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>l/s</td>
<td>si</td>
<td>E-93</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 31. Caudales ecológicos establecidos aguas abajo de las infraestructuras en el Plan Hidrológico de Cuenca.

<table>
<thead>
<tr>
<th>SISTEMA</th>
<th>Destino del agua</th>
<th>DESTINO</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turia</td>
<td>volumen salidas al mar</td>
<td>Puzol-El Puig</td>
<td>15 hm³</td>
</tr>
<tr>
<td></td>
<td>volumen reserva caudales medioambientales</td>
<td></td>
<td>10 hm³</td>
</tr>
<tr>
<td>Júcar</td>
<td>volumen salidas al mar</td>
<td>Plana Valencia Norte y Sur</td>
<td>55 hm³</td>
</tr>
<tr>
<td></td>
<td>volumen reserva albufera</td>
<td></td>
<td>100 hm³</td>
</tr>
</tbody>
</table>

Tabla 32. Volúmenes medioambientales establecidos en el Plan Hidrológico de Cuenca.
El Plan Hidrológico del Júcar establece específicamente el mantenimiento de unos caudales mínimos con carácter ecológico en las cuencas del río Júcar y Turia, aguas abajo de los embalses de: Benagéber, Loriguilla, Alarcón, Contreras, Tous y Forata.

Figura 78. Caudales ecológicos definidos específicamente en el Plan Hidrológico del Júcar.

5.2.1 Sistema Turia

En el Sistema de Explotación Turia, existen caudales medioambientales aguas abajo de los embalses de Benagéber y de Loriguilla. En el Plan Hidrológico de cuenca se asignan según el artículo 23: “en el tramo de río aguas abajo del embalse de Benagéber, y hasta el embalse de Loriguilla, se fija en 700 l/s el caudal ecológico a mantener durante todo el año, que al ser almacenado en el embalse de Loriguilla no requiere su asignación como volumen por motivos medioambientales

En el tramo de río aguas abajo del embalse de Loriguilla, y hasta el punto de retorno del caudal derivado a la central hidroeléctrica de Chulilla, se fija en 500 l/s el caudal a mantener por razones medioambientales”
En la Figura 79 aparecen las sueltas totales del embalse y las sueltas del embalse al río, obtenidas como diferencia entre las sueltas totales del embalse y los volúmenes derivados por el canal de Campos del Turia E-220, comparado con el caudal medioambiental establecido en el Plan de Cuenca. Se aprecia el cumplimiento de dichos caudales medioambientales.

Figura 79. Salidas mensuales del embalse de Benáger.

De igual forma, en la Figura 80 aparecen las sueltas del embalse de Loriguilla con los datos registrados por la estación de aforos E-147 y con el caudal ecológico establecido, observándose el cumplimiento del mismo.

Figura 80. Salidas mensuales del embalse de Loriguilla.
5.2.2 Sistema Júcar

En el Sistema de Explotación Júcar, existen caudales medioambientales aguas abajo de los embalses de Alarcón, de Contreras y de Tous, definidos en el Plan Hidrológico de cuenca según los artículos:

Art 24.17: “El mantenimiento de caudales mínimos aguas abajo del embalse de Alarcón, requiere el desembalse de un caudal mínimo necesario estimado en 2 m3/s, debido a que los bajos niveles piezométricos provocados por la actual explotación del acuífero de la Mancha Oriental ocasionan una pérdida de caudal en el río por recarga inducida hasta el mencionado acuífero. Así pues, y en tanto que no se modifiquen estas condiciones hidrogeológicas, deberá desembalsarse un mínimo necesario estimado de 2 m3/s para este objetivo específico y recogerse adecuadamente esta circunstancia en el Convenio de utilización a que se alude en el número 23. En el caso del embalse de Contreras se realizará el desembalse complementario necesario para cumplir el objetivo de mantener un caudal ecológico mínimo de 400 l/s”.

Art 24.18: “Se fija en 600 l/s, el caudal mínimo a mantener en todo momento en el río Júcar aguas abajo del embalse de Tous y hasta la toma de la Acequia Real del Júcar.”

Art 24.19: “Se fija en 200 l/s, el caudal a mantener en todo momento en el río Magro aguas abajo del embalse de Forata.”

En la Figura 81 aparecen las sueltas producidas desde el embalse de Alarcón comparadas con los datos registrados por las estaciones de aforos E-107 (aguas arriba de la toma del ATS) y la estación de aforos E-129 (aguas abajo de la toma del ATS), comparado con el caudal medioambiental establecido en el Plan de Cuenca. Se aprecia el correcto cumplimiento de los caudales medioambientales.

Figura 81. Salidas mensuales del embalse de Alarcón
Respecto a los caudales medioambientales aguas abajo del embalse de Contreras, en la Figura 82 se contrastan las salidas del embalse de Contreras con los datos registrados por la estación de aforos E-130 y con los requerimientos medioambientales, observándose el correcto cumplimiento de estos caudales medioambientales.

Figura 82. Salidas mensuales del embalse de Contreras

En la Figura 83 aparece el contraste de las salidas totales desde el embalse de Tous con las salidas del embalse al río registradas por la estación de aforos E-42 y el caudal ecológico establecido por el Plan Hidrológico de Cuenca, donde se aprecia como las sueltas desde Tous superan ampliamente el caudal medioambiental establecido por el Plan.

Figura 83. Salidas mensuales del embalse de Tous, salida total y al río.
En el análisis del embalse de Forata se dispone de las salidas totales del embalse (salidas al río y al canal de riegos del Magro) además de los datos registrados por la estación de aforos E-93 situada en Macastre la cual registra las salidas del embalse al río. En la Figura 84 se contrastan todos estos datos con los requerimientos medioambientales establecidos en el Plan Hidrológico de Cuenca, y se aprecia un claro incumplimiento del caudal medioambiental fijado (E-93). Del embalse de Forata se realizan sueltas superiores al caudal medioambiental fijado pero estas son derivadas para riego mientras que no se alcanza el caudal mínimo fijado por el PHJ para ese tramo de río.

Figura 84. Salidas mensuales del embalse de Forata.
6 GESTIÓN DE LAS CUENCAS
6.1 SISTEMAS DE EXPLOTACIÓN

En el marco de estudio se distinguen dos sistemas de explotación, el del Turia y el del Júcar.

Ambos se explotan de forma independiente pese a existir una conexión mediante el Canal Júcar-Turia, la cual podría utilizarse para la explotación conjunta de los sistemas.

Figura 85. Principales embalses involucrados en la gestión de las cuencas del Júcar y Turia

Los principales elementos de estos sistemas de explotación y sus reglas de gestión se resumen a continuación:
SISTEMA TURIA

Los principales embalses del sistema Turia son Arquillo de San Blas, Benagéber y Loriguilla, cuyas características se resumen en la Tabla 33.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Río</th>
<th>Capacidad máxima (hm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arquillo de San Blas</td>
<td>Turia</td>
<td>22,0</td>
</tr>
<tr>
<td>Benagéber</td>
<td>Turia</td>
<td>228,0</td>
</tr>
<tr>
<td>Loriguilla</td>
<td>Turia</td>
<td>71,0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>321</td>
</tr>
</tbody>
</table>

Tabla 33. Embalses en la cuenca del Turia

El embalse de Arquillo San Blas regula la parte alta de la cuenca y permite un suministro de suficiente garantía al abastecimiento de Teruel. En cuanto a los embalses de Benagéber y Loriguilla son los que regulan la cuenca media y baja permitiendo el suministro a las demandas de riego y a la ciudad de Valencia.
Las principales zonas de demandas agrarias son las que aparecen en la Tabla 34:

<table>
<thead>
<tr>
<th>Demanda agraria</th>
<th>Superficie Regada(Has) Año 2.000</th>
<th>Demanda Bruta(hm3) Año 2.000</th>
<th>Origen del recurso</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUADALAVIAR-ALFAMBRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra de Albarracín</td>
<td>642</td>
<td>4,2</td>
<td>Superficial</td>
</tr>
<tr>
<td>Zona de Teruel(Alfambr)</td>
<td>1.686</td>
<td>10,64</td>
<td>Superficial</td>
</tr>
<tr>
<td>ALTO TURIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riegos Altos del Turia</td>
<td>2.096</td>
<td>19,35</td>
<td>Mixto(3.16)</td>
</tr>
<tr>
<td>Serranía de Valencia</td>
<td>1.180</td>
<td>9,26</td>
<td>Mixto(8.15)</td>
</tr>
<tr>
<td>TURIA MEDIO Y CAMP DEL TURIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoya de Buñol y Chiva</td>
<td>3.600</td>
<td>21,00</td>
<td>Subterráneo (8.23)</td>
</tr>
<tr>
<td>Zona regable del Canal Camp del Turia</td>
<td>19.500</td>
<td></td>
<td>Mixto (8.22)</td>
</tr>
<tr>
<td>Manantial de San Vicente</td>
<td>1.000</td>
<td>13,40</td>
<td>Subterráneo (8.22)</td>
</tr>
<tr>
<td>Riegos del Turia (Pueblos Castillo)</td>
<td>6.300</td>
<td>81,00</td>
<td>Mixto (8.22)</td>
</tr>
<tr>
<td>BAJO TURIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riegos tradicionales de la Vega</td>
<td>5.500</td>
<td>98,54</td>
<td>Superficial</td>
</tr>
<tr>
<td>Acequia de Moncada</td>
<td>4.500</td>
<td>80,85</td>
<td>Superficial</td>
</tr>
<tr>
<td>Riegos no tradicionales de L´Horta Nord</td>
<td>4.500</td>
<td>25,66</td>
<td>Subterráneo (8.25)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>49.884</td>
<td>450,81</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 34. Principales demandas agrícolas del sistema de explotación Turia (fuente DGOH 2001).

NOTA: Entre paréntesis figura el número de la unidad hidrogeológica de la que se abastecen.

En cuanto a las principales demandas urbanas destacan, por encima del resto, las demandas de Valencia y de Teruel, si bien la demanda de Valencia se satisface también desde el Júcar a través del Canal Júcar-Turía.

<table>
<thead>
<tr>
<th>Demanda Urbana</th>
<th>Asignación PHJ(hm3/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abast. Teruel</td>
<td>2,84</td>
</tr>
<tr>
<td>Abast. Valencia</td>
<td>31,5</td>
</tr>
</tbody>
</table>

Tabla 35. Principales demandas urbanas del sistema de explotación Turia.

Las prioridades entre demandas se rigen por lo dicho en el Plan Hidrológico de Cuenca en su artículo 31:

“.... Los recursos regulados en el sistema de embalses Benagéber-Loriguilla y los caudales fluyentes aguas abajo de este embalse se asignarán por el orden siguiente: primero al abastecimiento de Valencia en la cuantía de 1 m3/s, segundo a la atención de los riegos tradicionales (Pueblos Castillo, Moncada y la Vega de Valencia) y tercero a la atención de los riegos de la zona regable del Camp del Turia....”
SISTEMA JÚCAR

Los principales embalses que regulan los recursos superficiales del río Júcar se resumen en la Tabla 36.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Río</th>
<th>Capacidad máxima (hm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarcón</td>
<td>Júcar</td>
<td>1.112,0</td>
</tr>
<tr>
<td>El Molinar</td>
<td>Júcar</td>
<td>4,3</td>
</tr>
<tr>
<td>Contreras</td>
<td>Cabriel</td>
<td>874,0</td>
</tr>
<tr>
<td>Embarcaderos</td>
<td>Júcar</td>
<td>11,0</td>
</tr>
<tr>
<td>Cortes</td>
<td>Júcar</td>
<td>116,0</td>
</tr>
<tr>
<td>La Muela</td>
<td>Júcar</td>
<td>20,0</td>
</tr>
<tr>
<td>Naranjero</td>
<td>Júcar</td>
<td>29,0</td>
</tr>
<tr>
<td>Escalona</td>
<td>Júcar</td>
<td>7,0</td>
</tr>
<tr>
<td>Tous</td>
<td>Júcar</td>
<td>72,4-378,6*</td>
</tr>
<tr>
<td>Bellús</td>
<td>Albaida</td>
<td>69,2</td>
</tr>
<tr>
<td>Forata</td>
<td>Magro</td>
<td>37,0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2351,9-2658,1</td>
</tr>
</tbody>
</table>

Tabla 36. Embalses en la cuenca del Júcar. *Capacidad útil dependiente de la época del año por motivos de laminación de avenidas

Los embalses de mayor importancia en la gestión del sistema son los de Alarcón, Contreras y Tous.

Las principales zonas de demandas agrarias del sistema son las que se resumen en la Tabla 37.

<table>
<thead>
<tr>
<th>Demanda agraria</th>
<th>Superficie Regada(Has) Año 2.000</th>
<th>Demanda Bruta (hm3) Año 2.000</th>
<th>Origen del recurso</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTO JÚCAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regadíos Alto Júcar</td>
<td>5.000</td>
<td>36,2</td>
<td>Superficial</td>
</tr>
<tr>
<td>MANCHA ORIENTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riegos Albacete</td>
<td>72.500</td>
<td>388,4</td>
<td>Subterráneo(8.29)</td>
</tr>
<tr>
<td>Pequeños regadíos</td>
<td>14.400</td>
<td>59,8</td>
<td>Mixto (8.29)</td>
</tr>
<tr>
<td>JÚCAR MEDIO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riegos de Almansa</td>
<td>2.500</td>
<td>24,26</td>
<td>Mixto (8.29)</td>
</tr>
<tr>
<td>Pequeños regadíos</td>
<td>1.000</td>
<td>7,86</td>
<td>Mixto (8.27, 8.28,8.29)</td>
</tr>
<tr>
<td>SELLENT Y ALBAIDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regadíos del Sellent</td>
<td>3.200</td>
<td>24,88</td>
<td>Mixto (8.27, 8.28)</td>
</tr>
<tr>
<td>Regadíos del Albaida</td>
<td>6.000</td>
<td>50,31</td>
<td>Mixto (8.28, 8.32)</td>
</tr>
<tr>
<td>Zona de Cañoles</td>
<td>6.500</td>
<td>59,65</td>
<td>Mixto (8.32)</td>
</tr>
</tbody>
</table>
Tabla 37. Principales demandas agrícolas del sistema de explotación Júcar (fuente DGOH 2001).

NOTA: Entre paréntesis figura el número de la unidad hidrogeológica de la que se abastecen

En cuanto a las principales demandas urbanas destaca, por encima del resto, la demanda de Valencia y, en menor medida, las de Sagunto y Albacete. La demanda a Valencia se satisface a través del Canal Júcar-Turia.

Tabla 38. Principales demandas urbanas del sistema de explotación Júcar

La prioridad entre demandas se rige por lo dicho en el Plan Hidrológico de Cuenca en su artículo 32, que en resumen, establece las siguientes prioridades:

1) Abastecimiento urbano a las poblaciones de Valencia, Sagunto y Albacete

2) Riegos tradicionales del Júcar

3) Canal Júcar-Turia y sustitución de bombeos del acuífero de la Mancha Oriental
6.2 CONEXIONES ENTRE SISTEMAS

Los principales canales de los sistemas Júcar y Turia son la Acequia Real del Júcar, el Canal Júcar-Turia, el Canal Campo del Turia y el Acueducto Tajo-Segura.

De ellos el que tiene especial interés en el ámbito de este estudio es el Canal Júcar-Turia pues permite la conexión de ambos sistemas de explotación.

![Figura 86. Principales canales de los sistemas Júcar y Turia](image)

El Canal Júcar-Turia con capacidad para 32 m³/s y con una longitud de 53 km, permite la conexión entre ambos sistemas atravesando 13 términos municipales desde Tous hasta Manises. Su altitud se sitúa entre la cota 75 y la 65 m.s.n.m.

Desde su origen va abasteciendo a una serie de tomas para el regadío de diferentes Comunidades de Regantes pasando por la Estación de Tratamiento de Aguas Potables (ETAP) de Picassent hasta llegar a la ETAP de Manises.

Este canal se planteaba en sus antecedentes más remotos (Plan General de Obras Hidráulicas, 1933) como un elemento imprescindible para la optimización de la
regulación de ambos ríos, sobre la base de derivar del río Júcar los caudales necesarios para los riegos de Vega baja del Turia y el abastecimiento de la ciudad de Valencia, liberando esos caudales del río Turia que, con menos posibilidades que el Júcar, proporcionaría mayores garantías de suministro al resto de sus demandas.

El Proyecto del Canal Júcar-Turia, de 1965, fijaba un caudal de diseño de 32 m3/s para atender las demandas de:

- Abastecimiento a Valencia y su área metropolitana

- Huerta de Valencia

- Zona Regable del propio Canal (25.965 Has)

En la actualidad, resulta que la Huerta de Valencia ha ido sufriendo un proceso de reducción de su superficie regable a favor de suelo urbano e industrial de modo que los suministros necesarios son mucho menores.

En resumen, los caudales máximos que debe atender el Canal en la actualidad son:

<table>
<thead>
<tr>
<th></th>
<th>m3/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abastecimiento a Valencia y su área metropolitana</td>
<td>6</td>
</tr>
<tr>
<td>Zona Regable del propio Canal</td>
<td>10</td>
</tr>
<tr>
<td>Abastecimiento a Sagunto y su zona industrial</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Tabla 39. Caudales máximos a atender por el Canal Júcar-Turia.
6.3 INTEGRACIÓN DE ACUÍFEROS

Las aguas subterráneas satisfacen una porción importante de las demandas consuntivas del Júcar y Turia. Los riegos con aguas subterráneas alcanzan la cifra 818,22 hm3/año, según (DGOH, 2001), en dichas cuencas lo que da cierta idea de su magnitud. También una gran cantidad de municipios y no menos industrias se abastecen con bombeos de aguas subterráneas.

Destacan en este aspecto la explotación del acuífero de la Mancha Oriental del que se extraen casi 460 hm3/año (ITAP, 2001), superando las extracciones producidas los recursos renovables del acuífero.

Otros acuíferos integrados en los sistemas de explotación son los de Llíria-Casinos (UHG 08-22), Caroch Norte (UHG 08-27) y Sur (UHG 08-28) y Plana de Valencia Norte (UHG-08-25) y Sur (UHG-08-26). Estos acuíferos satisfacen importantes demandas que en la mayoría de los casos superan el 80% de la recarga media.

Muchos de los acuíferos de estas cuencas, sobre todo los que están asociados a importantes áreas de riegos como los expuestos anteriormente, presentan problemas de contaminación por nitratos. Este problema cobra especial relevancia en el caso de los abastecimientos urbanos.

En el capítulo 9 y con más amplitud en el anejo D1 se plantean alternativas prácticas para el caso del abastecimiento a los municipios de la Ribera del Júcar.

El problema que se presenta en los municipios de Alzira, Algemesí, Albalat de la Ribera, Carcaixent, Corbera, Cullera, Favara, Fontaleny, Llaurí, Riola y Sueca es que los actuales pozos de abastecimiento urbano tienen un contenido en nitratos medio de unos 65 mg/l, alcanzando en algunos pozos casi 100 mg/l, cuando el máximo aconsejable por el Reglamento Técnico Sanitario son 50 mg/l. Esto ha llevado a la Conselleria de Obras Públicas a redactar un proyecto (COPUT, 1998b) en el que se plantea mezclar el agua de los actuales pozos de abastecimiento que extraen aguas del acuífero de la Plana Sur con aguas procedentes de pozos situados en el Caroch Norte de modo que la mezcla de agua de distintas calidades proporcione un contenido en nitratos que la haga apta para el consumo humano. Sin embargo, en este estudio se valoran los posibles inconvenientes de esta solución que serían la posible afección a los Ullals del Río Verde, que como se ha visto en el capítulo 5 están calificados como LIC, y la
insuficiencia de la red proyectada en caso de un aumento de nitratos en los pozos actuales.

Para ello se plantea una solución alternativa que sustituye los recursos del Caroch por superficiales procedentes de Tous, con un menor contenido en nitratos a la vez que mucho más estable de 6 mg/l. También se estudian los costes asociados a dicha alternativa.
6.4 UTILIZACIÓN CONJUNTA DE AGUAS SUPERFICIALES Y SUBTERRÁNEAS

Por utilización conjunta de recursos superficiales y subterráneos se entiende el uso planeado y coordinado de ambas fuentes, para la mejor satisfacción de la demanda. Las proporciones en que se combinan las cantidades de agua de una y otra procedencia para el suministro de la demanda son variables en función de la época del ciclo hidrológico anual, de las reservas existentes en el sistema de almacenamiento superficial y en los acuíferos, de la calidad disponible en cada uno y específicamente, del objetivo que se ha fijado en la explotación (SGOP-UPV, 1983).

La utilización conjunta aprovecha la complementariedad hidrológica de los embalses superficiales y los acuíferos. Al explotar las aguas subterráneas cuando los caudales o los almacenamientos superficiales son menores, se consigue un aumento de la garantía del suministro.

Si se consideran las relaciones entre aguas superficiales y subterráneas y la influencia recíproca de la explotación de cada una de ellas en la otra, el uso conjunto es una necesidad evidente en lugares con problemas de abastecimiento como es el caso de algunas zonas de las cuencas del Júcar y del Turia.

Existen ejemplos evidentes en la cuenca del Turia, como son los riegos del Canal Camp del Turia, y en la del Júcar, con los del Canal Júcar-Turia, sobre todo en su margen izquierda, en los que el uso conjunto ha conseguido unos niveles de garantía en el suministro que no se habrían alcanzado utilizando únicamente los recursos superficiales o subterráneos.

El uso conjunto tiene una importante componente económica por el mayor coste de los bombeos, pero ha llevado a una elevada garantía a la zona en las últimas sequías.

Las mayores posibilidades de utilización conjunta se sitúan en la Plana Norte y Sur de Valencia. En primer lugar, porque se encuentra en las inmediaciones de unas importantísimas zonas de riego atendidas por recursos superficiales y de las que el uso conjunto sería un seguro de garantía adicional. Y en segundo lugar, porque tras los análisis realizados mediante un modelo matemático distribuido de flujo subterráneo (véase el anejo F1) de la Plana Sur de Valencia y tras la simulaciones pertinentes (véase el anejo F5) se ha llegado a la conclusión de que puede plantearse una extracción anual de recursos subterráneos en casos de sequía de 71 hm³/año. Si bien, para un
planteamiento de uso continuado la cifra hay que reducirla sensiblemente, estimándose que las afecciones no presentan problemas para bombeos continuos entre 20 y 30 hm3.

En el marco de este trabajo se han planteado numerosos casos prácticos que se pueden ver en el capítulo 9 y en los anejos correspondientes, que son los del grupo D “Análisis de estrategias de uso conjunto”. En estos casos se presentan estrategias que van desde la utilización alternativa para el abastecimiento de los municipios de la Ribera de recursos subterráneos y superficiales (anejo D1) hasta la utilización conjunta habitual en casos como los del río Magro (anejo D5), la acequia de Moncada (anejo D6) o la Acequia Real mediante la electrificación de sus pozos de sequía (anejo D2).

Dichos estudios analizan también el coste económico de la implantación del uso conjunto en estas zonas, partiendo en muchos casos de infraestructuras ya existentes, como es el caso de los pozos de sequía de la Acequia Real del Júcar o de la Acequia de Moncada, en los que se ha comprobado la conveniencia de su electrificación para minimizar los costes de explotación. Baste decir, como ejemplo ilustrativo, que en la hipótesis de bombeo de 71 hm3/año en los pozos de sequía de la Acequia Real el coste de explotación de la infraestructura existente mediante grupos de gas-oil es de 4,77 céntimos de €/m3 mientras que con los pozos electrificados e incluyendo los costes de amortización de dicha electrificación son de 2,09 céntimos de €/m3.
7 MODELACIÓN DE LA GESTIÓN DE LAS CUENCAS
En este capítulo se resume la descripción de los modelos utilizados para la realización de la simulación de la gestión en los sistemas de explotación del Júcar y Turia.

Para los modelos de gestión conjunta de aguas superficiales y subterráneas se utiliza el Sistema Soporte de Decisión para la Planificación (SSD) “AQUATOOL” que se describe en los apartados siguientes.

El modelo matemático del acuífero de la Plana Sur de Valencia se ha realizado utilizando el software MODFLOW, del US Geological Survey (McDonald, M.G. et al., 1988). El anterior modelo existente (CHJ, 1997b) utilizaba el software desarrollado por Prickett et alt. (1971). Las capacidades de las últimas versiones visuales de MODFLOW hacen que esta transferencia constituya en sí mismo una mejora notable en las prestaciones del modelo.

En el caso de los acuíferos de la cuenca media y baja de río Turía se ha aplicado el método de los autovalores. En dicha modelización se han obtenido los descensos en los niveles piezométricos y las detracciones producidas en las aportaciones naturales del río Turía debidas a las extracciones producidas en dichos acuíferos.
7.1 ESQUEMAS DE SIMULACIÓN DE LA GESTIÓN DE LOS RÍOS JÚCAR Y TURIA

El sistema de recursos hídricos del río Turia se ha analizado con el modelo matemático de simulación de la gestión de recursos hídricos “SIMGES”, integrado en el SSD- para la Planificación, y Gestión de Recursos Hídricos AQUATOOL. Dicho sistema de recursos se analiza bajo distintos escenarios, evaluando la disponibilidad de recursos y grado de satisfacción de las demandas, siguiendo el proceso que se expone a continuación.

7.1.1 Esquema del río Turia

La modelación del sistema es el primer paso para la aproximación al conocimiento del mismo, siendo éste el paso más largo y costoso debido a la cantidad de información a considerar. De hecho, la modelación del sistema es un proceso que constituye un estudio por sí mismo. Dado que el sistema del río Turia está muy estudiado y cuenta con varios modelos realizados, en el ámbito del trabajo objeto del presente documento se ha realizado una actualización de la modelación previa.

En esta actualización destaca la inclusión del embalse del Arquillo de San Blas y del Abastecimiento a Teruel, dependiente de éste, así como la inclusión de la nueva serie de aportaciones al embalse que ya ha sido comentada y expuesta en los apartados anteriores.

El esquema de gestión básico de este río es el representado en la Figura 87, en la que se incluyen: 1) las infraestructuras fundamentales (presas, representadas con triángulos, y conducciones), 2) las demandas existentes (cuadrados), 3) las aportaciones hidrológicas (flechas gruesas), y 4) los acuíferos considerados en el análisis del sistema (octógono).

Este esquema sirve para plantear sobre él los distintos escenarios que se consideren en este estudio.
Figura 87. Esquema de simulación del sistema del río Turia.
7.1.1.1 Descripción general del esquema

- En la cabecera de este río se sitúa el embalse del Arquillo de San Blas (EMB6), al cual le llega la aportación superficial del río Guadalaviar correspondiente a la cuenca aguas arriba del mismo. Esta aportación se denomina ‘Arquillo’ (APO12). De este embalse parte la demanda urbana de Teruel, la cual retorna sus aguas residuales aguas abajo. En este punto es donde se ha incluido la derivación de la reserva establecida para las demandas agrícolas de la cabecera del Turia.

- Posteriormente, y ya en el río Turia, se sitúa el embalse de Benagéber (EMB7) al cual le llegan las aportaciones superficiales correspondientes a las cuencas aguas arriba del mismo no incluidas en la aportación anterior. Esta aportación se denomina ‘Benageber’ (APO7). De este embalse parte la demanda agraria del Canal Campo del Turia.

- Desde el embalse de Benagéber se inicia la conducción de tipo 1 (tramo de río o canal sin pérdidas) ‘Turia-1’ representando una conducción natural con un caudal mínimo, por motivos ecológicos, de 0,5 m3/s.

- Esta conducción finaliza en el embalse de ‘Loriguilla’ (EMB8), donde se incorpora la aportación del mismo nombre (APO12) que considera la entrada hidrológica superficial de la intercuenca entre Benageber y Loriguilla. Se conoce que el embalse tiene pérdidas por filtración, que se consideran, y que van a parar al acuífero ‘Filtr. Loriguilla’. Dicho acuífero, en realidad, sólo es un mecanismo para incorporar las pérdidas aguas abajo del embalse.

- El tramo de río denominado ‘Turia-3’ es una conducción del tipo 3 (tramo de río conectado hidráulicamente con un acuífero) que conecta el río Turia con el acuífero ‘Filtr. Loriguilla’ y se utiliza para recibir las mencionadas pérdidas.

- Esta conducción finaliza en el nudo 10, del que parte la toma de la demanda agraria ‘Pueblos Castillo’ y la toma para abastecimiento urbano de la comarca de Camp de Turia (definida en el Plan Hidrológico de Cuenca). También se incorpora la aportación de Pueblos Castillo correspondiente a la intercuenca entre Loriguilla y la derivación de los riegos de Pueblos Castillo.

- En el siguiente nudo (11), después de otra conducción de tipo 1, se presenta el retorno de las demandas agrarias de aguas arriba, mediante el retorno ‘Ret3-Manises’. De este nudo parte la toma de la demanda urbana ‘Valencia’.
- Aguas abajo, en el nudo 12 se disponen, finalmente, las tomas de las demandas agrarias ‘Acequia de Moncada’ y ‘Tradicionales del Turia’ que toman recurso superficial. Y el último tramo de río que representa las salidas al mar.

7.1.1.2 Prioridades y reglas de gestión.

Se describen a continuación, las prioridades en la gestión del agua en el sistema de recursos hídricos:

- En primer lugar, no se vulnerarán en la medida que sea posible los valores mínimos de embalses por motivos ambientales.
- Se intentan mantener en lo posible los caudales mínimos ecológicos.
- Se suministran demandas con el siguiente orden de prioridad: en primer lugar se dará al abastecimiento urbano de Teruel y Valencia; en segundo lugar se suministra a las demandas de los riegos tradicionales de La Vega del Turia, de Pueblos Castillo y la Acequia de Moncada, y por último se suministra a la demanda de riegos del Canal Campo del Turia.
- Una vez abastecidas todas las demandas del sistema, el agua sobrante se conserva en los embalses, de forma que se soltará agua antes de Loriguilla que de Benagéber y del Arquillo de San Blas, como se explica a continuación.

Se ha realizado un estudio sobre las posibilidades de gestión del conjunto de los dos embalses con el objetivo de determinar las reglas de gestión óptimas que maximizan el volumen total regulado y de forma que se reduzcan al mínimo las pérdidas de agua por sueltas al mar.

De este estudio se ha concluido que en primer lugar se realizarán sueltas del embalse de Loriguilla antes que del embalse de Benagéber y, a su vez, antes de éste que desde el Arquillo de San Blas, lo cual se debe a dos motivos fundamentales. El primero se justifica por encontrarse el embalse de Benagéber aguas arriba del embalse de Loriguilla ya que, frente a la gestión del recurso, siempre será preferible almacenar el agua en el embalse de aguas arriba. El segundo motivo se debe a la existencia de filtraciones en el embalse de Loriguilla, lo que se traduce en la preferencia de almacenar el agua en Benagéber para reducir las pérdidas por filtraciones.

Respecto al embalse del Arquillo de San Blas la gestión prevista consiste en mantener el embalse con el máximo volumen posible, ya que es la única fuente de suministro para el abastecimiento urbano de la ciudad de Teruel.
Del conjunto de los embalses de Benagéber y Loriguilla se ha tomado, como base de partida, la delimitación de los volúmenes de embalse mínimo y máximos para cada mes. Puede comprobarse que el uso de distintos criterios, a la hora de decidir de qué embalse se puede tomar agua para suministrar a las demandas, tiene una gran influencia en la disponibilidad de agua en el futuro. Mediante el valor asignado a los volúmenes objetivos en los embalses, se indica al modelo de gestión la preferencia de almacenar agua en uno o en el otro embalse. De esta forma se ha asignado al embalse de Benageber un volumen objetivo próximo al volumen máximo, y al embalse de Loriguilla próximo al volumen mínimo, de manera que siempre se soltará agua en primer lugar del embalse de Loriguilla, y en segundo lugar de Benagéber.

De forma análoga se ha definido para el embalse del Arquillo de San Blas un volumen objetivo muy próximo al volumen máximo de este embalse, con el objetivo de mantenerlo siempre lo más lleno posible.
7.1.2 Esquema del río Júcar

El sistema de recursos hídricos del río Júcar, al igual que en la cuenca del río Turia, se ha analizado con el modelo matemático de simulación de la gestión de recursos hídricos “SIMGES”, integrado en el SSD-PRRHH AQUATOOL. Dicho sistema de recursos se analiza bajo distintos escenarios, evaluando la disponibilidad de recursos y el grado de satisfacción de las demandas siguiendo el proceso que se expone a continuación.

El sistema de la cuenca del río Júcar puede ser conceptualizado para la modelación de su gestión en fase de planificación con distintas resoluciones, contemplando los distintos elementos que lo componen en la realidad, ya sea de forma detallada ya sea agregada, dependiendo de la finalidad del modelo, el tipo de resultados que se esperen obtener y la metodología de análisis de los mismos que se vaya a emplear. Así, los modelos recientemente empleados son los siguientes:

- Esquema conceptual utilizado en el documento (DIHMA, 1997) "Modelos de Evaluación y Gestión de Recursos Hidráulicos del Júcar, incluyendo el Análisis del Comportamiento del Acuífero de la Plana”. Convenio entre la Universidad Politécnica de Valencia (UPV) e Ingeniería Civil S.A. (INCISA).

- Esquema conceptual utilizado en el documento (DIHMA, 2001) "Implantación en la Confederación Hidrográfica del Júcar de un Sistema Soporte de Decisión en materia de Recursos Hídricos". Convenio realizado entre el Departamento de Ingeniería Hidráulica y Medio Ambiente (DIHMA) de la Universidad Politécnica de Valencia (UPV) y la Confederación Hidrográfica del Júcar (CHJ).

En el ámbito del trabajo objeto del presente documento, se ha pretendido disponer de un modelo de simulación para el análisis en la fase de planificación que, a su vez, sea válido para su aplicación en la fase de gestión. Por este motivo el esquema conceptual definitivamente adoptado se ha sometido a las siguientes condiciones:

- Compatibilidad para los estudios de planificación y gestión. Si bien las finalidades de los dos tipos de estudios no son las mismas, es conveniente que los esquemas y modelos utilizados en ambos tipos de aplicaciones sean lo más coherentes posible entre sí. Esto no implica, necesariamente, que los esquemas y modelos deban de ser exactamente iguales, sino que mantengan una coherencia de datos, agregaciones de elementos y resultados que permita suponer que los sistemas modelados son sustancialmente idénticos.
• Obtención de resultados para todos aquellos elementos individuales que forman parte del proceso de decisión.

• Obtención de resultados agregados que sean de interés para el proceso de decisión.

• Compatibilidad con la disponibilidad de datos para alimentar los modelos, en “tiempo real”, a partir de la información proporcionada por el SAIH de la CHJ, y otros datos que puedan razonablemente ser recabados por otros medios e introducidos en el sistema.

El esquema definitivo que se describe a continuación es el resultado de un proceso de calibración y de continuas modificaciones debidas a la validación de los modelos.

7.1.2.1 Descripción general del esquema del río Júcar

El sistema del Júcar está formado por el río Júcar y su afluente el Cabriel. Ambos confluyen a la altura de Cofrentes. Destaca que la mayor concentración de usos de agua superficial se ubica en la zona costera, la llamada Ribera del Júcar, aguas abajo del embalse de Tous, existiendo también una importante utilización de aguas subterráneas en el tramo medio del Júcar, el acuífero de la Mancha Oriental. El sistema del Júcar tiene tres grandes embalses reguladores: Alarcón, Contreras y Tous.

Las demandas agrícolas, que consumen la mayor parte del agua, están formadas por los riegos de la Ribera Alta, los de la Ribera Baja, los del canal Júcar-Turia y los regadíos del acuífero de la Mancha Oriental.

Las poblaciones que se abastecen, en su totalidad o en parte, del sistema del Júcar son: Valencia, Albacete y Sagunto.

Como demanda industrial destaca el consumo para refrigeración de la Central Nuclear de Cofrentes.

Además, en los últimos años se están incorporando transferencias hacia otros sistemas como es el trasvase a la Marina Baja y el futuro trasvase al Vinalopó.

En la Figura 88 se encuentra un esquema del modelo realizado, apareciendo en el anejo E2 la descripción detallada del modelo de simulación empleado.
Figura 88: Esquema del modelo propuesto del río Júcar
La descripción detallada de todo el sistema Júcar aparece en el anejo E2. De esta forma, y debido a que el tramo situado aguas arriba del embalse de Tous es de sobras conocido y a que el tramo final del río Júcar presenta mayor complejidad en los flujos de agua, se describe a continuación, únicamente y de forma detallada, este tramo.

7.1.2.1.1 Detalle y modelación aguas abajo de Tous

La mayor parte de los usos superficiales de agua del sistema del Júcar se encuentran aguas abajo del embalse de Tous. Debido a ello la complejidad del modelo en esa parte es mayor, tal y como puede observarse en la Figura 89.

Figura 89: Esquema del modelo aguas abajo de Tous

Del nudo 14 parte también la toma de los Riegos del Canal Júcar - Turia. Dichos riegos se han considerado mediante un elemento de demanda de nombre “Riegos Canal J -T”.

El tramo “C.J.T. -2” finaliza en el nudo 15 del cual parten las tomas de las demandas de las poblaciones de Sagunto y Valencia. Ambas se han considerado mediante elementos de demanda con los nombres “Valencia” y “Sagunto”, respectivamente.

Del embalse de Tous parte una conducción de tipo 1 que representa el tramo del río Júcar aguas abajo del embalse de Tous. Esta conducción finaliza en el nudo 10. Existe otra conducción que parte del embalse de Tous y termina en el nudo 24 por la cual circulan los vertidos del embalse al mar, esta conducción se introduce en el modelo para conocer de forma sencilla los caudales que circulan por el río debidos a vertidos del embalse.

Del nudo 10 parten las tomas de los riegos de la Ribera Alta. Estos se han considerado mediante dos elementos de demanda “Acequia Real y Antella” y “Escalona y Carcagente” que representan, respectivamente, los riegos de la acequia Real, junto con los de Antella, y los riegos de las acequias de Escalona y Carcagente.

Como se aprecia en la figura, cada elemento de demanda tiene tres tomas y se corresponde con un mecanismo en la modelación para que el comportamiento del modelo sea lo más parecido a la realidad, ya que se divide en tres el suministro que realiza el modelo a la demanda: demanda neta, pérdidas por infiltración, retornos superficiales. La explicación detallada de la necesidad de las tres tomas aparece en apartados posteriores y es resultado del estudio (DIHMA, 2001).

Del nudo 10 parte una conducción de tipo 1 que representa el tramo del río Júcar aguas abajo de las tomas de los riegos de la Ribera Alta. Por dicha conducción circulan las sueltas necesarias de Tous para los riegos de la Ribera Baja, ya que la sueltas producidas por vertidos de Tous circulan por la conducción descrita anteriormente.

Dicha conducción finaliza en el nudo 11, al cual le llegan los retornos superficiales de las demandas de la Ribera Alta a través del elemento de retorno “Retorno Superficial”, concebido para tal fin, de forma desagregada para la margen derecha y la margen izquierda.
Del nudo 11 parte una conducción del tipo 1 que representa al río Júcar desde el fin del tramo anterior hasta las tomas de los riegos de la Ribera Baja.

Esta conducción termina en el nudo “12” donde se incorporan los retornos subterráneos de la Ribera Alta, tanto de la margen derecha como de la margen izquierda. Para ello se ha tenido que considerar dos elementos acuíferos de tipo unicelular que drenan sus aguas a dos conducciones de tipo 2 las cuales se incorporan al río Júcar.

Parte de los retornos de los riegos de la margen izquierda desaguan a la Albufera, lo cual se ha representado mediante una conducción de tipo 2 que infiltra el agua a un elemento acuífero de tipo unicelular “Albufera” que, a su vez, drena a una conducción tipo 3 donde puede registrarse los volúmenes retornados por el modelo a la Albufera de Valencia.

El nudo 12 también representa la confluencia del Júcar con los ríos Magro, Verde, Sellent y Albaida. Estos ríos se han conceptualizado como un elemento único de aportación denominado “APO5. Inferiores”.

Del mismo nudo 12 parten las tomas de los riegos de Sueca y Cuatro Pueblos. Dichos riegos se han considerado en dos elementos de demanda “Sueca” y “Cuatro Pueblos”. La demanda de Cuatro Pueblos retorna parte de su suministro mediante un elemento de retorno al nudo 22 donde puede ser aprovechado por la demanda de Cullera.

Entre los nudos 12 y 22 se ha representado el río Júcar con una conducción de tipo 1. El nudo 22 del que parte la toma de los riegos de Cullera. Dichos riegos se han considerado en el elemento de demanda “Cullera”.

Del nudo 22, también parte una conducción del tipo 1 hasta el nudo 24, la cual representa el tramo del río Júcar desde el azud de Cullera hasta la desembocadura, donde se se unen los vertidos de Tous. Finalmente, la conducción del nudo 24 al nudo final se ha puesto para contabilizar los caudales totales del Júcar al mar, incluyendo los vertidos que se producen de Tous, según se explicó anteriormente.
7.2 MODELOS DE SIMULACIÓN HIDRODINÁMICA DE LOS ACUÍFEROS

En el ámbito de los trabajos del presente estudio, se han elaborado dos modelos distribuidos de flujo subterráneo. Uno para los acuíferos de la cuenca media y baja del Turia, y otro para el acuífero de la Plana Sur de Valencia.

La utilidad del modelo de los acuíferos de la cuenca baja del Turia es la de llegar a cuantificar las detracciones que producen los bombeos en dichos acuíferos en las aportaciones naturales del río en su parte baja.

La finalidad del modelo de la Plana Sur es múltiple. Por un lado, ha servido para contrastar el modelo simplificado del acuífero incluido en el modelo de gestión de la cuenca que representa el funcionamiento de los retornos por infiltración de los riegos de la Ribera Alta, y proporcionar mejores coeficientes de reparto de estos entre retornos al río, a la albufera, y al mar. Por otro, se constituye como el modelo de referencia a la hora de estimar los efectos de las políticas de utilización conjunta, tanto regulares, como de pozos de sequía, con extracciones en este acuífero.

Ninguno de los dos modelos se ha incorporado al correspondiente modelo de gestión de la cuenca, dado que se consideran suficientemente válidos los modelos simplificados que se incluyen e innecesaria la complejidad adicional que suponen en cuanto a aumento de datos, y de requerimientos de cálculo.
7.2.1 Modelo de los acuíferos del Turia medio.

7.2.1.1 Introducción

Los acuíferos de las cuencas media y baja del río Turia se conocen de una forma relativamente imprecisa. Esto es debido, sin duda, a la gran complejidad litológica y estructural de la zona. En ellos están representados, en la práctica, todas las formaciones de los niveles mesozoicos y terciarios, además del cuaternario. Los accidentes tectónicos permiten que los diferentes horizontes permeables estén en conexión hidráulica, pero en la zona puede haber hasta nueve horizontes permeables y seis o siete impermeables o semipermeables y no es fácil dilucidar, en cada caso, que acuíferos se explotan y cual es el nivel piezométrico de cada formación. No es posible hacer un análisis detallado y preciso del funcionamiento hidrogeológico, ni parece fácil hacer una propuesta de cómo abordarlo para poder dilucidar las incertidumbres que existen sobre la hidrogeología de la región. Hasta ahora se han realizado estudios de síntesis considerando las unidades como si formasen un único acuífero. Los diversos estudios realizados describen adecuadamente el ámbito geológico y litológico y en ellos se ha podido consultar la cuantificación de las recargas de lluvia y por retornos de riego de los acuíferos, las entradas desde otros acuíferos, así como las descargas a otros o a ríos. En general, en dichos estudios no se detalla la metodología utilizada ni aparece reflejada la incertidumbre existente sobre los componentes del balance.

De los acuíferos de la cuenca Media y Baja del Turia, como ya se ha visto no se tiene un conocimiento detallado de sus características hidrodinámicas por lo que no queda otra opción que recurrir a la realización de modelos agregados. Para ello se ha elaborado un modelo agregado en el que cada unidad se representa por una o unas pocas celdas. En el modelo están representadas las unidades Buñol-Cheste con una celda, Liria-Casinos con dos celdas, Carraixet Náquera-Puzol con una celda y Plana de Valencia Norte con tres celdas. No se ha considerado oportuno añadir ninguna unidad más, como las Serranías o Alcublas, ya que para obtener la influencia sobre los caudales del Turia, que es el aspecto que más interesa reproducir y valorar, serían poco importantes. De hecho la simulación también proporcionaría información adicional sobre el efecto de las transferencias a la Plana de Valencia Norte aunque con menos fiabilidad y daría indicaciones sobre la influencia sobre los niveles piezométricos. El modelo empleado es el que se esquematiza en la figura siguiente (donde las líneas continuas son las divisorias de las UHG y las
discontinuas las subdivisiones de las mismas que conforman cada una de las celdas analizadas).

Figura 90. Esquema de las celdas correspondientes a los acuíferos de la cuenca baja del Turia.

Consta de 7 nudos de los que se da su superficie, el coeficiente de almacenamiento asignado y el almacenamiento en el mismo.

<table>
<thead>
<tr>
<th>Nudo</th>
<th>Localización</th>
<th>Superficie</th>
<th>Coeficiente de almacenamiento</th>
<th>Almacenamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nudo 1</td>
<td>Plana de Valencia Norte</td>
<td>50 km²</td>
<td>12%</td>
<td>6. 10⁶ m²</td>
</tr>
<tr>
<td>Nudo 2</td>
<td>Carraixet Náquera-Puzol</td>
<td>230 km²</td>
<td>6%</td>
<td>13,6 10⁶ m²</td>
</tr>
<tr>
<td>Nudo 3</td>
<td>Liria-Casinos 1</td>
<td>300 km²</td>
<td>3%</td>
<td>9, 10⁶ m²</td>
</tr>
<tr>
<td>Nudo 4</td>
<td>Plana de Valencia Norte</td>
<td>25 km²</td>
<td>12%</td>
<td>3, 10⁶ m²</td>
</tr>
<tr>
<td>Nudo 5</td>
<td>Liria-Casinos</td>
<td>300 km²</td>
<td>2%</td>
<td>6, 10⁶ m²</td>
</tr>
<tr>
<td>Nudo 6</td>
<td>Buñol-Cheste</td>
<td>550 km²</td>
<td>5%</td>
<td>27,5 10⁶ m²</td>
</tr>
<tr>
<td>Nudo 7</td>
<td>Plana de Valencia Norte</td>
<td>230 km²</td>
<td>12%</td>
<td>27,6 10⁶ m²</td>
</tr>
</tbody>
</table>
7.2.1.2 Situación actual del sistema de acuíferos.

Se ha realizado la simulación a la escala de tiempo mensual desde octubre de 1970 hasta septiembre de 2001 con el objetivo de conocer la situación actual de los acuíferos, teniendo en cuenta los bombeos producidos históricamente. De esta forma es posible conocer los efectos de dichos bombeos en la reducción en las aportaciones naturales al río Turia. Siempre actuando por el principio de superposición.

Para ello se ha considerado únicamente los bombeos en las celdas 3, 5 y 6, que son las que se encuentran más próximas al cauce del río Turia, ya que los efectos producidos en el río por los bombeos en el resto de celdas pueden considerarse despreciables.

Se ha supuesto una evolución lineal de las extracciones desde el año 1970/71 hasta el año 1986/87, a partir del cual se considera que las extracciones son las producidas en la actualidad.

<table>
<thead>
<tr>
<th>Celda</th>
<th>Extracción neta (hm3/año) actualidad</th>
<th>Extracción neta (hm3/año) 1970/71</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

De esta forma se obtienen las siguientes leyes de extracciones producidas históricamente en cada una de las celdas:

![Extracciones netas anuales](image)

Figura 91. Hipótesis de bombeos históricos producidos en las celdas próximas al río.
La puesta en funcionamiento de los bombeos sobre los acuíferos supone una disminución de los niveles piezométricos respecto al régimen natural de los mismos, no habiéndose alcanzado hasta la fecha su nivel de estabilización si se mantienen los bombeos actuales, tal y como se observa en la Figura 92:

![Figura 92](image)

Figura 92. Evolución de los descensos en las alturas piezométricas en las celdas próximas al cauce del río Turia.

Además, es posible conocer los caudales de relación río-acuífero debidos a la existencia de los bombeos. En la Figura 93 se muestra como en la actualidad se reducen las salidas del acuífero al río en casi 1 m³/s debido a los efectos de los bombeos. También se aprecia como el caudal detraído no ha llegado a su valor de estabilización si se mantienen los bombeos actuales.

![Figura 93](image)

Figura 93. Disminución en los caudales de salida al río Turia (m³/s) debidos a los efectos de las extracciones de agua existentes.
Mediante el modelo propuesto es posible cuantificar, a su vez, la disminución del volumen de reservas en cada una de las celdas consideradas, así como en su conjunto, debidas a las extracciones producidas. En la Figura 94 se muestra la disminución de las reservas en las tres celdas más próximas al río Turia y en el conjunto de las tres celdas.

![Figura 94. Disminución de las reservas (hm³) de agua en las celdas próximas al río Turia debido al efecto de las extracciones de agua.](image)

Finalmente, el efecto de los bombeos en los acuíferos próximos al río Turia produce una disminución en las aportaciones de éstos al río. Dicha disminución se denomina detracción. En la Figura 95 se muestra la evolución de las detracciones producidas en la cuenca media y baja del río Turia a lo largo de los últimos años, estimándose dichas detracciones para el año 2000/01 en 22 hm³.

![Figura 95. Detracciones anuales (hm³/año) en el río Turia debido a las extracciones existentes en los acuíferos próximos al río Turia.](image)
7.2.2 Modelo matemático distribuido de la Plana Sur

7.2.2.1 Introducción

El objetivo perseguido con la modelación del acuífero de la Plana de Valencia es el de disponer de una herramienta capaz de simular la evolución del mismo frente a acciones exteriores alternativas a integrar el modelo del acuífero en el modelo global de simulación del sistema de recursos hídricos Júcar-Turia.

En el anejo F1 se puede consultar con detalle todo el proceso de modelación y validación.

También se incluye un informe de la campaña de medición del nivel freático en los acuíferos de la Plana Sur y del Caroch Norte que ha servido para validar adecuadamente el modelo. Dicho informe, que se puede consultar en el anejo F2, es el resultado de dos campañas de campo, antes y después del periodo estival, en las zonas de los regadíos tradicionales y del Canal Júcar-Turia con objeto de poder estimar la oscilación del nivel piezométrico. La modelación de este acuífero ha sido de gran importancia de cara a valorar alternativas de uso conjunto debido al balance holgado que presenta.

7.2.2.2 Antecedentes

El antecedente más antiguo de la modelación de la zona en estudio es el “Modelo hidrodinámico del Caroch-Plana de Valencia” (IGME, 1982) que es un modelo realizado con el programa de Pricket y Londquist (Prickett et al, 1971), y que se extiende a una zona mucho más amplia que la zona objeto del presente estudio pues llega hasta el delta del Palancia comprendiendo, así, las Planas Norte y Sur y parte de los bordes mesozoicos que las limitan.

Cronológicamente, la siguiente referencia es el estudio de “Evaluación a nivel de aplicación de los recursos hídricos subterráneos disponibles en los acuíferos del sector sur del sistema 51 (Plana de Valencia) posibilidades de su utilización inmediata” (IGME, 1.986). En este estudio la extensión del modelo que se confeccionó fue más limitada que la del anterior, correspondiendo precisamente a la misma zona modelada en el presente informe. El objeto del modelo era la simulación de diversas alternativas de gestión del acuífero 51 basadas en distintas posibilidades de recarga artificial con aguas no reguladas del río Júcar en invierno, y su explotación posterior en época de riego.
Finalmente, el siguiente estudio en orden de aparición es el titulado “Caracterización estadística de los recursos subterráneos que afluyen al Júcar aguas abajo de Tous”, realizado por la Confederación Hidrográfica del Júcar en 1.989 (CHJ, 1989), y en el que se utiliza, con alguna calibración adicional, el mismo modelo que en el estudio anterior pero extendido a una superficie más reducida que coincide con la unidad hidrogeológica 8.26 (Plana Sur). El objetivo de este estudio fue el análisis de las posibilidades de trasvase al Vinalopó y la respuesta del acuífero ante distintas reglas de operación del embalse de Tous.

Sobre la base de los estudios anteriores, y dentro del “Estudio del Plan General de adecuación del sistema de explotación de los aprovechamientos tradicionales del Júcar” de la Confederación Hidrográfica del Júcar, realizado en 1.997 (CHJ, 1997), se puso a punto un nuevo modelo que incluía la misma zona que la del estudio del IGME (1.986) y que es, por otra parte, la misma que se incluye en el modelo objeto del presente informe. Este es, pues, el antecedente más reciente de la modelación de la zona objeto de estudio.

7.2.2.3 Características hidrogeológicas de los acuíferos modelados

Como es sabido, el acuífero de la Plana Sur de Valencia constituye un acuífero multicapa que en todos los modelos antecedentes citados se ha agrupado en dos acuíferos separados por un acuitardo.

En estos modelos las formaciones cuaternarias se han integrado formando el acuífero superior que, en realidad, no es un acuífero único sino que está formado por una serie de capas de arenas y gravas entre las que están intercaladas capas de arcillas y limos. En el acuífero inferior se han integrado todos los tramos permeables miocenos.

En el cuaternario la transmisividad adoptada en los modelos oscila entre 500 m²/día al norte de Sueca y 3.000 m²/día en las proximidades de la Albufera y de los ríos Júcar y Verde. El coeficiente de almacenamiento adoptado varía entre 0,20 y 0,05. La transmisividad en el acuífero mioceno varía entre 200 y 2.000 m²/día y el coeficiente de almacenamiento entre 0,12 y 0,01. En realidad todos estos valores son los obtenidos en los correspondientes procesos de calibración, debiendo tenerse en cuenta que muchas de las perforaciones existentes captan niveles semiconfinados, además del libre, y que el conocimiento disponible sobre el acuífero no permitía discernir cuales eran las extracciones en cada acuífero.
Por lo que se refiere a los bordes de las zonas modeladas, tanto el acuífero mioceno como el cuaternario están en contacto, por el oeste, con los acuíferos carbonatados del Caroch Norte. En el borde sur no existe el acuífero mioceno que es reemplazado por el acuífero calcáreo de la Sierra de las Agujas. En todos los modelos citados antes, la condición en estos bordes fue de nivel constante impuesto.

7.2.2.4 Modelo Matemático distribuido propuesto

La zona modelada se corresponde básicamente con la unidad hidrogeológica 8.26 (Plana Sur de Valencia) más la zona de la unidad 8.25 (Plana Norte de Valencia) comprendida entre la Albufera y la ciudad de Valencia. El motivo de incorporar parte la unidad 8.25 es que con la delimitación así adoptada se incluye dentro de la zona modelada, la totalidad de la Albufera y toda la zona regable de la Acequia Real del Júcar incluida la correspondiente al cultivo del arroz con sus especiales características. En la Figura 96 puede verse la discretización espacial propuesta que es similar a al adoptada en CHJ (1997) al no producirse ningún problema de falta de convergencia o estabilidad en los procesos numéricos de simulación.

Figura 96. Discretización realizada en el modelo Modflow para el acuífero de la Plana Sur
Los parámetros hidrogeológicos han sido recalibrados en la validación del modelo, manteniéndose algunos como las transmisividades o coeficientes de almacenamiento y modificándose otros como las conductividades río-acuífero o las conductividades entre capas.

Las acciones que se han considerado se pueden dividir entre bombeos y recargas, ambas se pueden ver con su distribución interanual en la Figura 97, Figura 98 y Figura 99.

Los bombeos que se han considerado en la zona modelada son los bombeos urbanos e industriales así como los bombeos agrícolas, tanto en la Sierra de las Agujas como en el regadío tradicional en la zona regable del Canal Júcar-Turia.

En cuanto a los bombeos industriales y agrícolas de la Sierra de las Agujas y de los riegos tradicionales, se han mantenido los mismos valores que en CHJ (1997). Sin embargo, los bombeos urbanos y los agrícolas del Canal Júcar-Turia han sido totalmente revisados con información adicional que no pudo tenerse en cuenta en el anterior modelo.

Así, los bombeos urbanos han sido introducidos a partir de los datos (ubicación de cada pozo y volumen extraído) del inventario de infraestructuras de abastecimiento urbano de la COPUT (COPUT, 1996), completando la información, en caso de duda, con la solicitada a los Ayuntamientos, y contrastándola con los datos de las encuestas a los Ayuntamientos que dispone la Confederación Hidrográfica del Júcar.

En cuanto a los bombeos agrícolas del Canal Júcar-Turia, recordar que han sido variables a lo largo de los años, porque con la puesta en explotación del Canal se han ido reduciendo a medida que se ha ido suministrando más agua superficial en sustitución de la subterránea.

El estudio de todas las situaciones, la situación anterior a la puesta en explotación del canal y la situación actual, se ha realizado a partir de datos de superficies regadas superfciales y subterráneas de los que dispone MS INGENIEROS S.L. por su función asesora de La Comunidad de usuarios del Canal Júcar-Turia desde su puesta en explotación. En la Figura 97 se pueden ver estos bombeos.

La modificación más importante en cuanto a las recargas es la modificación de la recarga de lluvia a partir de datos SIMPA extraídos de los actuales trabajos de la Oficina de Planificación Hidrológica.
Distribución mensual de los bombeos

<table>
<thead>
<tr>
<th>Acción</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Total anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombeos urbanos</td>
<td>2,07</td>
<td>2,07</td>
<td>2,07</td>
<td>2,07</td>
<td>2,07</td>
<td>2,07</td>
<td>2,07</td>
<td>2,07</td>
<td>2,07</td>
<td>5,18</td>
<td>5,52</td>
<td>5,18</td>
<td>34,50</td>
</tr>
<tr>
<td>Bombeos industriales</td>
<td>0,43</td>
<td>5,20</td>
</tr>
<tr>
<td>Bombeo agrícola Sierra de las Agujas</td>
<td>2,57</td>
<td>0,71</td>
<td>1,19</td>
<td>0,49</td>
<td>0,86</td>
<td>2,84</td>
<td>2,51</td>
<td>3,27</td>
<td>6,85</td>
<td>8,76</td>
<td>5,87</td>
<td>3,59</td>
<td>39,50</td>
</tr>
<tr>
<td>Bombeos regadío tradicional</td>
<td>1,14</td>
<td>0,32</td>
<td>0,53</td>
<td>0,22</td>
<td>0,38</td>
<td>1,26</td>
<td>1,11</td>
<td>1,45</td>
<td>3,04</td>
<td>3,88</td>
<td>2,60</td>
<td>1,59</td>
<td>17,50</td>
</tr>
<tr>
<td>Bombeo margen derecha Canal J-T Actual</td>
<td>1,20</td>
<td>0,49</td>
<td>0,29</td>
<td>0,23</td>
<td>0,42</td>
<td>1,21</td>
<td>0,95</td>
<td>1,33</td>
<td>2,55</td>
<td>3,26</td>
<td>2,72</td>
<td>1,80</td>
<td>16,48</td>
</tr>
<tr>
<td>Bombeo margen derecha Canal J-T Anterior</td>
<td>2,27</td>
<td>0,94</td>
<td>0,55</td>
<td>0,44</td>
<td>0,79</td>
<td>2,29</td>
<td>1,80</td>
<td>2,53</td>
<td>4,83</td>
<td>6,18</td>
<td>5,15</td>
<td>3,40</td>
<td>31,16</td>
</tr>
<tr>
<td>Bombeo margen izquierda Canal J-T Actual</td>
<td>1,18</td>
<td>0,49</td>
<td>0,29</td>
<td>0,23</td>
<td>0,41</td>
<td>1,19</td>
<td>0,94</td>
<td>1,32</td>
<td>2,52</td>
<td>3,22</td>
<td>2,68</td>
<td>1,77</td>
<td>16,23</td>
</tr>
<tr>
<td>Bombeo margen izquierda Canal J-T Anterior</td>
<td>1,66</td>
<td>0,68</td>
<td>0,40</td>
<td>0,32</td>
<td>0,58</td>
<td>1,67</td>
<td>1,32</td>
<td>1,85</td>
<td>3,53</td>
<td>4,51</td>
<td>3,76</td>
<td>2,49</td>
<td>22,78</td>
</tr>
<tr>
<td>Total Situación actual</td>
<td>8,59</td>
<td>4,51</td>
<td>4,79</td>
<td>3,67</td>
<td>4,57</td>
<td>9,00</td>
<td>8,01</td>
<td>9,88</td>
<td>17,47</td>
<td>24,73</td>
<td>19,82</td>
<td>14,36</td>
<td>129,42</td>
</tr>
<tr>
<td>Total Situación anterior al canal</td>
<td>10,13</td>
<td>5,15</td>
<td>5,17</td>
<td>3,97</td>
<td>5,11</td>
<td>10,56</td>
<td>9,24</td>
<td>11,60</td>
<td>20,76</td>
<td>28,94</td>
<td>23,33</td>
<td>16,68</td>
<td>150,64</td>
</tr>
</tbody>
</table>

Figura 97. Distribución mensual de los bombeos considerados en el modelo del acuífero de la Plana Sur de Valencia
ESTUDIO DE UTILIZACIÓN CONJUNTA DE LOS RECURSOS HÍDRICOS SUPERFICIALES y SUBTERRÁNEOS DE LAS CUENCAS MEDIAS Y BAJAS DE LOS RÍOS JÚCAR Y TURIA

<table>
<thead>
<tr>
<th>Acción</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Total anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recarga Regadío Sierra Agujas</td>
<td>0,52</td>
<td>0,14</td>
<td>0,24</td>
<td>0,10</td>
<td>0,17</td>
<td>0,57</td>
<td>0,51</td>
<td>0,66</td>
<td>1,39</td>
<td>1,77</td>
<td>1,19</td>
<td>0,73</td>
<td>8,00</td>
</tr>
<tr>
<td>Recarga Regadío Tradicional</td>
<td>6,09</td>
<td>1,53</td>
<td>2,61</td>
<td>1,10</td>
<td>1,93</td>
<td>6,24</td>
<td>5,50</td>
<td>17,50</td>
<td>22,25</td>
<td>31,36</td>
<td>20,08</td>
<td>8,71</td>
<td>125,00</td>
</tr>
<tr>
<td>Recarga Canal Júcar-Turia</td>
<td>1,60</td>
<td>0,66</td>
<td>0,40</td>
<td>0,31</td>
<td>0,56</td>
<td>1,62</td>
<td>1,27</td>
<td>1,78</td>
<td>3,42</td>
<td>4,36</td>
<td>3,63</td>
<td>2,39</td>
<td>22,00</td>
</tr>
<tr>
<td>Recarga de lluvia (media)</td>
<td>16,76</td>
<td>15,86</td>
<td>17,25</td>
<td>11,08</td>
<td>8,00</td>
<td>7,34</td>
<td>3,87</td>
<td>1,45</td>
<td>0,47</td>
<td>0,06</td>
<td>0,50</td>
<td>8,12</td>
<td>94,33</td>
</tr>
<tr>
<td>Entradas Caroch Norte (media)</td>
<td>3,11</td>
<td>4,15</td>
<td>3,11</td>
<td>2,07</td>
<td>2,07</td>
<td>1,04</td>
<td>2,07</td>
<td>1,04</td>
<td>0,47</td>
<td>0,00</td>
<td>0,00</td>
<td>2,07</td>
<td>20,74</td>
</tr>
<tr>
<td>Entradas Sierras Agujas (media)</td>
<td>2,79</td>
<td>4,51</td>
<td>3,16</td>
<td>2,14</td>
<td>2,04</td>
<td>0,29</td>
<td>1,59</td>
<td>0,17</td>
<td>-2,02</td>
<td>-2,77</td>
<td>-2,00</td>
<td>1,07</td>
<td>10,95</td>
</tr>
<tr>
<td>Total</td>
<td>30,87</td>
<td>26,85</td>
<td>26,77</td>
<td>16,81</td>
<td>14,78</td>
<td>17,10</td>
<td>14,81</td>
<td>22,60</td>
<td>25,50</td>
<td>34,78</td>
<td>23,40</td>
<td>23,10</td>
<td>281,02</td>
</tr>
</tbody>
</table>

Figura 98. Distribución mensual de los retornos de riego y entradas de otras unidades hidrogeológicas
Figura 99. Entradas y salidas medias sobre el acuífero
7.2.2.5 Verificación del funcionamiento del modelo

El proceso seguido de contraste y verificación del modelo del acuífero de la Plana Sur, propuesto en el ámbito de este estudio, ha consistido en simular el periodo histórico 1969-2000 y comprobar la bondad de los resultados a través de tres indicadores:

1) Comparación de mapas de isopiezas del modelo con las reales.

2) Evolución de los piezómetros disponibles. Comparación entre los resultados del modelo y los valores observados.

3) Drenajes al Júcar.

Como se comentó con anterioridad, se ha realizado una campaña para la medición del nivel freático y que, dada la gran inercia del acuífero, ha permitido tener una idea de los niveles que ha mantenido el acuífero a lo largo del periodo de simulación. En el anejo F2 puede consultarse un informe que es el resultado de dos campañas de campo, antes y después del periodo estival, en las zonas de los regadíos tradicionales y del Canal Júcar-Turia con objeto de poder estimar la oscilación del nivel piezométrico. En la Figura 100 se puede ver una ficha tipo de las confeccionadas en dicha campaña de piezometría.

La comparación de los niveles piezométricos observados con los obtenidos de la simulación se puede ver en la Figura 101. Se han comparado los niveles simulados con los observados en los piezómetros de los que se disponía de datos más fiables durante el periodo de simulación. También se ha intentado escoger un piezómetro de cada zona del acuífero para que la comparación sea más representativa.

Las medidas realizadas por los piezómetros del acuífero son reproducidas de manera adecuada por el modelo, no presentándose excesivas diferencias, como se puede ver en la Figura 101.
Figura 100. Ficha tipo de la campaña piezométrica realizada para la calibración del modelo distribuido de la Plana Sur de Valencia (Anejo D3)
Figura 101. Niveles piezométricos simulados y observados en el acuífero.
7.2.2.6 Resultados del modelo

La validación del modelo permite obtener las salidas al mar del acuífero y los drenajes a los ríos Júcar y Verde y a la Albufera.

Las salidas al mar son del orden de los 30 hm³/año. Las mayores salidas al mar se producen en verano sistemáticamente, cuando aumentan los riegos y por tanto las recargas al acuífero, siendo menores en los meses de invierno.

En cuanto a los drenajes al Júcar y a la Albufera, también tienen un valor razonable y consecuente con otros estudios. Los drenajes al Júcar son del orden de los 80 hm³/año y a la Albufera sobre los 25 hm³/año.

Los drenajes al Júcar obtenidos por este modelo presentan una diferencia con los de otros estudios como el del IGME (1986) que ofrecía un drenaje de 122 hm³/año, el de CHJ (1989), que daba 115 hm³/año para el río Júcar y la Albufera de forma conjunta, o el más reciente de CHJ (1997) que los valoraba en 120 hm³/año.

Esta cifra, de unos 80 hm³/año, es más cercana a la realidad, pues mucho del drenaje que se atribuye al Júcar procede de retornos de riego, en cuyo caso se estaría contabilizando dos veces el mismo recurso.

7.2.2.7 Resumen y conclusiones

Como resumen de todo lo considerado para la confección del modelo se dan, a continuación, las cifras globales de las entradas y de las salidas al modelo.

Entradas

- Recargas de riego 155 hm³/año
 - Sierra de las Aguas 8 hm³/año
 - Regadío tradicional 125 hm³/año
 - Canal Júcar-Túria 22 hm³/año
- Recargas de lluvia 94 hm³/año
- Entradas del Caroch Norte 21 hm³/año
- Entradas de la S. Aguas 10,7 hm³/año

TOTAL ENTRADAS 281 hm³/año
Salidas
Bombeos

<table>
<thead>
<tr>
<th></th>
<th>Situación anterior al canal</th>
<th>151 hm³/año</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Situación actual</td>
<td>130 hm³/año</td>
</tr>
<tr>
<td>Bombeo urbano</td>
<td></td>
<td>34,5 hm³/año</td>
</tr>
<tr>
<td>Bombeo industrial</td>
<td></td>
<td>5,2 hm³/año</td>
</tr>
<tr>
<td>Bombeo agrícola Sierra Agujas</td>
<td></td>
<td>39,5 hm³/año</td>
</tr>
<tr>
<td>Bombeo regadío tradicionales</td>
<td></td>
<td>17,5 hm³/año</td>
</tr>
<tr>
<td>Bombeo Canal Júcar-Turia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Situación anterior al canal</td>
<td></td>
<td>54 hm³/año</td>
</tr>
<tr>
<td>- Situación actual</td>
<td></td>
<td>32,7 hm³/año</td>
</tr>
</tbody>
</table>

Drenajes y salidas al mar

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>136 hm³/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salidas al mar</td>
<td></td>
<td>31,2 hm³/año</td>
</tr>
<tr>
<td>Drenajes al río Júcar y Verde</td>
<td></td>
<td>78,8 hm³/año</td>
</tr>
<tr>
<td>Drenajes a la Albufera</td>
<td></td>
<td>26,2 hm³/año</td>
</tr>
</tbody>
</table>

TOTAL SALIDAS:

<table>
<thead>
<tr>
<th>Situación anterior al canal</th>
<th>287 hm³/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situación actual</td>
<td>266 hm³/año</td>
</tr>
</tbody>
</table>

La utilización del acuífero conjuntamente con el sistema superficial puede proporcionar una capacidad muy importante de regulación de recursos.

Los balances del acuífero desde la puesta en marcha del canal resultan positivos, es decir con mayores recargas que bombeos, lo que permite cierto margen de explotación adicional no utilizada hasta la fecha.

Las recargas medias son de 280 hm³/año y los bombeos de 130 hm³/año lo que permitiría tal y como se ha comentado anteriormente un aumento de las extracciones sin afectar demasiado a los drenajes al Júcar y Albufera y que permitiría un mayor aprovechamiento de los recursos subterráneos del que todavía se realiza.
El balance del acuífero entre 1969/70 y 1999/00, que puede verse en la Figura 102, muestra que la sequía que se padece en los últimos años provoca unos balances negativos del acuífero en el periodo 95-00, esto podría llevar a pensar que se existe una importante explotación, sin embargo el análisis detallado de los todos los datos no indica una merma de las reservas del acuífero pues el balance medio total es positivo.

![Balance del acuífero](image)

Figura 102. Balance del acuífero

7.2.2.8 Limitaciones y mejoras del modelo

El modelo desarrollado y puesto a punto para la Plana de Valencia Sur reproduce de forma bastante satisfactoria las observaciones disponibles, dando lugar, para las acciones históricas (bombeos y recargas) a unos resultados muy razonables de drenajes, de acuerdo con el conocimiento que actualmente se tiene del sistema. Dado el objetivo que se tiene de integrar el modelo en la simulación a la escala del sistema global de recursos hídricos superficiales y subterráneos, se considera que el modelo es totalmente adecuado.

No obstante, deben efectuarse las siguientes consideraciones:

- Si las condiciones futuras del acuífero cambian de forma apreciable será necesario plantear una investigación hidrogeológica del entorno y replantear las acciones sobre el modelo y el funcionamiento conceptual de la capa superior. Esto podría afectar fundamentalmente a las zonas en el entorno de la Albufera.
- Este modelo debe considerarse como una herramienta que permite cuadrar el funcionamiento actual del sistema con el objetivo de incorporar éste a un modelo de escala superior. No es, en principio, adecuado para estudios de detalle ni de problemas de movimiento de contaminantes. Para ello debería profundizarse en el estudio de la hidrogeología.
7.3 CALIBRACIÓN Y VALIDACIÓN INTEGRADA DE LOS MODELOS MODFLOW Y DE RETORNOS AGREGADO

Para la correcta estimación de las aportaciones, en régimen natural, existentes en el río Júcar aguas abajo de Tous, es necesario cuantificar lo más fiablemente posible los retornos de riego procedentes de la Ribera Alta, ya que estos se suman a las aportaciones naturales que se registran en el río Júcar.

Por este motivo, y durante el desarrollo del Convenio de Colaboración entre el Área de Explotación de la Confederación Hidrográfica del Júcar (CHJ) y el Departamento de Ingeniería Hidráulica y Medio Ambiente (DIHMA) de la Universidad Politécnica de Valencia, para la “Implantación en la CHJ de Herramientas de decisión en materia de Explotación de Recursos Hídricos” (DIHMA, 2001), se desarrolló un modelo agregado que reproduce los flujos de agua existentes en el río Júcar entre el embalse de Tous y su desembocadura. En dicho trabajo se obtenían las aportaciones naturales al río Júcar entre el embalse de Tous y el azud de Sueca, para lo cual era necesario estimar la cantidad de retornos de riego existentes en el río procedentes de las zonas de riego de la Ribera Alta.

Por otro lado, y dentro del ámbito del objeto del presente documento, se ha realizado una modelación matemática distribuida del Acuífero de la Plana Sur de Valencia, descrita en el apartado anterior, donde se reproduce de forma detallada los flujos de agua existentes en el acuífero y su interacción con el propio río. Dentro de este trabajo es posible cuantificar el volumen de agua que retorna al río Júcar procedente de los riegos de la Ribera Alta.

A continuación se adjunta el contraste entre los retornos de riego obtenidos mediante ambos modelos (actualizando el modelo de retornos realizado para el Área de Explotación de CHJ).

7.3.1 Contraste entre ambos modelos

Se ha procedido a contrastar los resultados obtenidos con ambos modelos, de forma, que se compara el drenaje producido al río Júcar hasta el Azud de Sueca y la suma del resto de drenajes que se producen en el acuífero (drenaje al tramo final del Júcar, drenaje a la Albufera, y drenaje al mar).
Respecto al drenaje que se produce al río Júcar aguas arriba del Azud de Sueca, los resultados del modelo distribuido del acuífero (MODFLOW Riego) presentan valores muy similares a los obtenidos mediante el modelo de retornos (DIHMA 2002). En ambos modelos se recoge de forma significativa la variabilidad existente en los suministros reales a los riegos de la Ribera del Júcar y por lo tanto se aprecia la fuerte disminución de salidas de agua al río en el año 1994/95, año en el que circularon caudales muy bajos por el río en dicho tramo.

![RETORNOS SUBTERRÁNEOS AL JUCAR](image)

Figura 103. Drenajes al río Júcar aguas arriba del Azud de Sueca debidos a los retornos de riego de la Ribera Alta.

Por otro lado, respecto el resto de drenajes (drenaje del río Júcar aguas abajo del Azud de Sueca, drenaje a la Albufera de Valencia y drenaje directo al mar), que se producen debidos al efecto de los retornos de riegos, con el modelo distribuido del acuífero se obtienen valores ligeramente más bajos y con menor variabilidad que con el modelo de retornos. A pesar de ello y dadas las diferencias en las metodologías empleadas puede indicarse que el resultado es satisfactorio.
Figura 104. Drenajes al río Júcar aguas abajo del Azud de Sueca, a la Albufera de Valencia y al mar, debidos a los retornos de riego de la Ribera.

Tras analizar los resultados de ambos modelos se concluye que el nivel de semejanza es satisfactorio, de forma que puede utilizarse los resultados de reparto espacial obtenidos por el modelo distribuido para descomponer los resultados del modelo agregado de aportaciones, en salidas a la Albufera, salidas tramo final del Júcar y salidas directas al mar (sus valores medios anuales son los que ya se han señalado en la Figura 49. *Distribución de los flujos existentes en la Ribera del Júcar con la asignación establecida por el PHJ a las demandas de la Ribera Alta del Júcar.*).
8 ANÁLISIS Y DIAGNÓSTICO DE LA SITUACIÓN ACTUAL Y DE LAS PREVISTAS EN EL PHC Y PHN
8.1 SIMULACIÓN DE LA SITUACIÓN ACTUAL EN CONDICIONES ORDINARIAS

Con los modelos desarrollados se ha llevado a cabo el análisis de los sistemas Júcar y Turia en la situación actual y en condiciones ordinarias, y también la respuesta de dichos sistemas en situaciones de sequía.

8.1.1 Sistema Turia

Se ha analizado el sistema Turia en la situación actual y previsible a corto plazo de demandas existentes en la Cuenca.

El orden de prioridades utilizado en el modelo de simulación es el establecido en el art. 23 de la Orden de 13 de Agosto de 1999 por la que se aprueba el contenido normativo del Plan Hidrológico del Júcar (CHJ, 1999), y que establece:

"Los recursos regulados en el sistema de embalses Benagéber-Loriguilla y los caudales fluyentes aguas abajo de este embalse se asignarán por el orden siguiente: Primero al abastecimiento de Valencia en la cantidad de 1 m³/s, segundo a la atención de los riegos tradicionales (Pueblos Castillo, Moncada y de la Vega de Valencia) y tercero a la atención de los riegos de la zona regable del Camp del Turia.

Se considera zona regable del Camp del Turia la contemplada en el Plan Coordinado de Obras, aprobado mediante Orden de 29 de octubre de 1985 en aplicación del Decreto 2688/1970, de 20 de agosto, y del Real Decreto 1627/1981, de 8 de mayo, para la que se asignan unos recursos superficiales máximos de 100 hm³/año, con un valor medio estimado en 85 hm³/año.

En la Tabla 40 se muestra un resumen de las demandas consuntivas actuales del sistema Turia, incluyendo su distribución mensual y el porcentaje de retorno al sistema.

<table>
<thead>
<tr>
<th>Demanda</th>
<th>Total (hm³)</th>
<th>oct</th>
<th>nov</th>
<th>dic</th>
<th>ene</th>
<th>feb</th>
<th>mar</th>
<th>abr</th>
<th>may</th>
<th>jun</th>
<th>jul</th>
<th>ago</th>
<th>sep</th>
<th>Retorno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbana Teruel</td>
<td>3.2</td>
<td>8.5</td>
<td>8.2</td>
<td>8.5</td>
<td>8.5</td>
<td>7.6</td>
<td>8.5</td>
<td>8.2</td>
<td>8.5</td>
<td>8.2</td>
<td>8.5</td>
<td>8.5</td>
<td>8.2</td>
<td>80%</td>
</tr>
<tr>
<td>Urbana Valencia</td>
<td>31.5</td>
<td>8.5</td>
<td>8.2</td>
<td>8.5</td>
<td>8.5</td>
<td>7.7</td>
<td>8.5</td>
<td>8.2</td>
<td>8.5</td>
<td>8.2</td>
<td>8.5</td>
<td>8.5</td>
<td>8.2</td>
<td>-</td>
</tr>
<tr>
<td>Reg Reserva Cabecera</td>
<td>10.0</td>
<td>6.0</td>
<td>4.0</td>
<td>4.0</td>
<td>3.0</td>
<td>6.0</td>
<td>8.0</td>
<td>12.0</td>
<td>12.0</td>
<td>16.0</td>
<td>16.0</td>
<td>9.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reg Campo del Turia</td>
<td>85.0</td>
<td>8.0</td>
<td>4.0</td>
<td>3.7</td>
<td>3.4</td>
<td>3.4</td>
<td>6.3</td>
<td>7.5</td>
<td>11.5</td>
<td>12.1</td>
<td>16.0</td>
<td>16.4</td>
<td>9.8</td>
<td>-</td>
</tr>
<tr>
<td>Reg Pueblos Castillo</td>
<td>51.9</td>
<td>7.7</td>
<td>4.8</td>
<td>5.4</td>
<td>5.0</td>
<td>5.0</td>
<td>9.4</td>
<td>7.8</td>
<td>10.2</td>
<td>9.9</td>
<td>11.5</td>
<td>12.0</td>
<td>11.4</td>
<td>30%</td>
</tr>
<tr>
<td>Reg Aceq Moncada</td>
<td>80.9</td>
<td>4.4</td>
<td>2.5</td>
<td>4.4</td>
<td>3.9</td>
<td>3.9</td>
<td>8.8</td>
<td>9.5</td>
<td>10.7</td>
<td>11.4</td>
<td>13.9</td>
<td>13.9</td>
<td>12.8</td>
<td>-</td>
</tr>
<tr>
<td>Reg Vega Valencia</td>
<td>80.2</td>
<td>3.8</td>
<td>0.9</td>
<td>2.1</td>
<td>1.7</td>
<td>3.2</td>
<td>7.0</td>
<td>7.7</td>
<td>12.1</td>
<td>16.8</td>
<td>21.4</td>
<td>16.7</td>
<td>6.6</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 40. Demanda consuntiva actuales en el sistema Turia.
Para la simulación del esquema del río Turia se ha considerado un suministro anual para la demanda del Canal Campo del Turia de 85 hm³, tal y como se indica en el Plan Hidrológico de cuenca del Júcar (CHJ, 1999). Además, y de forma complementaria se aplican distintos niveles de restricción al suministro de esta demanda, con el objetivo de mantener en niveles aceptables las garantías del resto de las demandas del sistema.

La restricción al suministro de agua que se aplica tiene las siguientes características:

- Se utiliza un indicador, que consiste en la suma de volúmenes almacenados en los embalses de Benagéber y de Loriguilla.

- Se define un valor umbral del indicador (suma de volúmenes de los dos embalses), para decidir si se realizará o no suministro en un mes dado, aplicándose éste de la siguiente forma:
 - Si la suma de volúmenes embalsados se encuentra por encima del umbral, entonces se realizará el suministro en ese mes a la demanda de Campo del Turia.
 - Si se encuentra por debajo de ese umbral, no se realizará ningún suministro al Canal Campo del Turia en ese mes.

Así, se han realizado diversas simulaciones con una serie de valores para este umbral, de forma que puede observarse, para la serie histórica de aportaciones, la evolución de las garantías de las distintas demandas. Debe tenerse en cuenta que el volumen máximo de almacenamiento por ambos embalses es de 290,9 hm³.

Por otro lado, no es necesaria la aplicación de una restricción variable mensualmente, pues, en efecto, debido a las características con que se presentan las sequías en el periodo histórico, su aparición se produce de forma brusca por lo que la restricción se constituye en un volumen de reserva para el resto de las demandas del sistema, no importando su distribución mensual.

En las figuras que se mencionan más adelante se observa la evolución de los déficits acumulados a 1 año, 2 años y 10 años consecutivos, para cada una de las hipótesis planteadas, comparando dicha evolución con los criterios de fallo aceptable del tipo Utah Division of Water Resources (UTAH-DWR), que recientemente han sido utilizados en el Libro Blanco del Agua en España (DGOH, 2000), con unos valores de 50%, 75% y 100%, respectivamente, sobre la demanda anual.
En primer lugar, en la Figura 105 y Figura 106, correspondientes a las demandas de riegos tradicionales de la Vega de Valencia y de la Acequia de Moncada, se puede apreciar cómo ambas demandas tienen un comportamiento similar. El déficit acumulado a 1 año no supera el establecido por UTAH-DWR en ninguna de las hipótesis establecidas, mientras que el déficit acumulado a 2 años va disminuyendo a medida que aumenta la restricción a la demanda de Campo del Turia siendo inferior al 75 % cuando se aplican restricciones por debajo 100 hm3 almacenados en los embalses, y situándose muy próximo a dicho criterio en el resto de hipótesis, salvo en la más restrictiva de 200 hm3. Para finalizar, el déficit acumulado a 10 años se reduce de forma más sensible que el de 2 años a medida que se aumenta el nivel de restricción.

Se aprecia que con la aplicación de restricciones a la demanda de Campo del Turia, con volúmenes almacenados por debajo de 100 hm3, se pueden considerar aceptables los déficits en las demandas prioritarias del sistema.

Figura 105. Evolución de los déficits acumulados en la demanda de Riegos Tradicionales de la Vega de Valencia, a 1 año, a 2 años y a 10 años según el nivel de restricción en la demanda de Campo del Turia.

En la Figura 106 se puede apreciar que el comportamiento de la demanda de los riegos Tradicionales de la Acequia de Moncada es idéntico al de los Riegos Tradicionales de la Vega de Valencia.
Figura 106. Evolución de los déficits acumulados en la demanda de los Riegos Tradicionales de la Acequia de Moncada, a 1 año, a 2 años y a 10 años según el nivel de restricción en la demanda de Campo del Turia.

La demanda de los riegos Tradicionales de Pueblos Castillo, (Figura 107), posee un comportamiento similar a las dos demandas descritas anteriormente. Sin embargo, su garantía en el suministro es ligeramente superior a las otras dos demandas debido a que se encuentra aguas arriba de ellas y con idéntica prioridad en el suministro.

Figura 107. Evolución de los déficits acumulados en la demanda de los riegos Tradicionales Pueblos Castillo, a 1 año, a 2 años y a 10 años según el nivel de restricción en la demanda de Campo del Turia.

En la Figura 108 es apreciable el incremento en la evolución de los déficits acumulados en la demanda del Canal Campo del Turia, según los niveles de restricción aplicados a dicha demanda. Se observa cómo supera ampliamente en todas las hipótesis los criterios establecidos por el UTAH-DWR. Las curvas de déficits acumulados a 1 año y a 2 años son insensibles al nivel de restricción que se aplica presentando sus valores máximos,
de forma que, en el peor periodo de dos años consecutivos no se realizará ningún suministro a dicha demanda. La curva de déficits acumulados a 10 años es creciente conforme aumenta el grado de restricción a esta demanda, obteniéndose un déficit acumulado a 10 años del 500%, cuando aplicamos un nivel de restricción de 100 hm3.

Figura 108. Evolución de los déficits acumulados en la demanda de Campo del Turia, a 1 año, a 2 años y a 10 años según el nivel de restricción aplicado a la propia demanda de Campo del Turia.

Estos déficits se concentran en los dos periodos de sequía en los cuales se activa la restricción al suministro, como se puede observar en la Figura 109, donde aparece el número de meses de cada año en que se aplica la restricción al suministro de los riegos del Canal Campo del Turia.

Figura 109. Número de meses en que no se realiza suministro a la demanda de Campo del Turia.
Se aprecia cómo en los tres años consecutivos de 1994/95 a 1996/97, no se realiza ningún suministro a la demanda del Canal Campo del Turia, y en año 1999/00 tampoco se realiza suministro alguno a dicha demanda. También existen restricciones en algunos meses de otros años.

La subsanación de estos déficits, que sólo aparecen en los periodos críticos de escasez de recursos superficiales, se puede realizar mediante el empleo de aguas subterráneas en la propia zona de riegos de Campo del Turia, activando los pozos de sequía, o aumentando la extracción de aguas subterráneas en las zonas de riego mixto, en aquellas épocas en que no se disponga de recurso superficial.

Por otro lado, se observa cómo la aplicación de esta restricción al suministro del Canal Campo del Turia, en aquellas situaciones en que la suma de volúmenes en los embalses es inferior a 100 hm³, reduce el número de situaciones de fallo en el resto de demandas agrícolas del sistema. En la Figura 110 aparecen los déficits mensuales en la demanda de Riegos tradicionales de la Vega de Valencia, la cual es representativa del resto de demandas agrícolas del sistema.

![Figura 110. Déficits mensuales en la demanda de Riegos Tradicionales del Turia.](image)

8.1.1.1 Obtención de la regla de gestión

Tras realizar el análisis de las distintas hipótesis consideradas, se propone una regla de gestión para los riegos del Canal Campo del Turia, la cual se establece en dos etapas:

a) La primera etapa consiste en establecer la satisfacción a la demanda del Canal Campo del Turia, de forma que se realice un suministro anual máximo de 85 hm³. A dicho suministro se le da menor prioridad que al resto de demandas existentes sin aplicarle ningún tipo de restricción, salvo cuando no existe tal recurso. Bajo esta
situación las garantías que se obtienen para las demandas son las indicadas en la Tabla 41:

<table>
<thead>
<tr>
<th>HIPÓTESIS</th>
<th>Garantía mensual</th>
<th>Garantía anual</th>
<th>Garantía Volumétrica</th>
<th>% déficit</th>
<th>Dotación hm³/año</th>
<th>Suministro medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda de Campo del Turia 85 hm³/año</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>1 año</td>
<td>2 años</td>
<td>(hm³/año)</td>
</tr>
<tr>
<td>Urbana de Teruel</td>
<td>99,6</td>
<td>98,3</td>
<td>99,6</td>
<td>21,1</td>
<td>21,1</td>
<td>21,1</td>
</tr>
<tr>
<td>Urbana Valencia</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pueblos Castillo</td>
<td>95,3</td>
<td>83,3</td>
<td>95,9</td>
<td>48,9</td>
<td>96,6</td>
<td>186,9</td>
</tr>
<tr>
<td>Acequia Moncada</td>
<td>95,3</td>
<td>83,3</td>
<td>95,3</td>
<td>56,4</td>
<td>111,1</td>
<td>213,2</td>
</tr>
<tr>
<td>Vega de Valencia</td>
<td>95,3</td>
<td>83,3</td>
<td>95,3</td>
<td>6,4</td>
<td>110,9</td>
<td>212,7</td>
</tr>
<tr>
<td>Campo Turia</td>
<td>93,9</td>
<td>83,3</td>
<td>92,1</td>
<td>73,2</td>
<td>140,0</td>
<td>324,4</td>
</tr>
<tr>
<td>Reserva Cabecera</td>
<td>93,9</td>
<td>83,3</td>
<td>92,2</td>
<td>73,0</td>
<td>139,1</td>
<td>321,3</td>
</tr>
</tbody>
</table>

Tabla 41. Garantías en las distintas demandas al asignar una demanda de 85 hm³ al año al Canal Campo del Turia.

Se observa que esta nueva demanda induce una pérdida en las garantías al suministro en el resto de demandas existentes, por lo que se hace necesario establecer una regla de gestión para el sistema disponiendo de un volumen de reserva de agua para las demandas de mayor prioridad en aquellos periodos con escasez de recursos. Esta reserva se obtiene impidiendo que se derive agua al Canal en los periodos de escasez de agua.

b) La segunda etapa consiste en minimizar las afecciones producidas en las garantías de las demandas prioritarias del sistema, planteando un suministro anual a los riegos del Canal Campo del Turia de 85 hm³ salvo cuando la suma de volúmenes almacenados en los embalses de Benagéber y de Loriguilla sea inferior a 100 hm³, es decir, en aquellos periodos de escasez de recursos. De esta forma se minimizan las afecciones en las garantías del resto de las demandas agrarias en el río Turia. Dichas garantías se aprecian en la Tabla 42.

<table>
<thead>
<tr>
<th>HIPÓTESIS</th>
<th>Garantía mensual</th>
<th>Garantía anual</th>
<th>Garantía Volumétrica</th>
<th>% déficit</th>
<th>Dotación hm³/año</th>
<th>Suministro medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda de Campo del Turia 85 hm³/año</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>1 año</td>
<td>2 años</td>
<td>10 años</td>
</tr>
<tr>
<td>Urbana de Teruel</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urbana Valencia</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pueblos Castillo</td>
<td>97,8</td>
<td>91,7</td>
<td>98,0</td>
<td>39,1</td>
<td>65,3</td>
<td>117,8</td>
</tr>
<tr>
<td>Acequia Moncada</td>
<td>97,8</td>
<td>91,7</td>
<td>97,8</td>
<td>45,2</td>
<td>75,5</td>
<td>133,2</td>
</tr>
<tr>
<td>Vega de Valencia</td>
<td>97,8</td>
<td>91,7</td>
<td>97,8</td>
<td>45,1</td>
<td>75,3</td>
<td>132,8</td>
</tr>
<tr>
<td>Campo Turia</td>
<td>84,7</td>
<td>76,7</td>
<td>85,0</td>
<td>100</td>
<td>200</td>
<td>531,1</td>
</tr>
<tr>
<td>Reserva Cabecera</td>
<td>97,8</td>
<td>91,7</td>
<td>96,7</td>
<td>65,0</td>
<td>112,0</td>
<td>200,0</td>
</tr>
</tbody>
</table>

Tabla 42. Garantías en las distintas demandas al considerar una restricción a la demanda de Campo del Turia que se activa con un nivel de embalse menor que 100 hm³.

La aplicación de esta restricción a los riegos del Canal Campo del Turia minimiza los efectos sobre las garantías del resto de demandas prioritarias del sistema, mientras que
hace necesario para la demanda del Canal Campo del Turia el empleo de aguas subterráneas (pozos de sequía, o una mayor extracción de aguas subterráneas en las zonas de riego mixto) en los periodos de escasez de recursos superficiales.

8.1.1.2 Conclusiones de la situación actual

Las conclusiones alcanzadas son:

- Existe garantía del 100% en las demandas urbanas de Valencia y de Teruel a lo largo de todo el periodo histórico.

- Durante la mayor parte del periodo histórico simulado (1940/41 a 1999/00), existen excedentes y grandes vertidos de agua al mar, pudiendo satisfacerse todas las demandas del sistema en un 100%, por lo que en la mayor parte de este periodo el sistema funciona adecuadamente.

- Existen dos periodos secos, con una gran disminución en las aportaciones hidrológicas al sistema, el primero entre los años 1982/88 y el segundo en los años 1992/2000. Estos dos periodos de tiempo marcan las posibilidades de aprovechamiento del sistema ya que cualquier nueva demanda debe garantizar en este periodo de tiempo, un suministro adecuado al resto de demandas existentes, así como mantener ella misma un suministro mínimo en esta época. Únicamente en estos dos periodos se producen déficits y restricciones en los suministros de las demandas.

- Coinciden los dos periodos secos con la época en que son más fiables los datos históricos de las aportaciones hidrológicas restituidas a régimen natural.

- Aparece un nuevo periodo de sequía el cual se inicia en el año 1998/1999 y es más intenso en el año 1999/00. Dicho periodo de escasez produce que se tenga que incrementar el volumen de la curva de reserva en los embalses respecto del establecido en estudios anteriores.

Como conclusión del análisis de la gestión del sistema del río Turia hay que destacar la posibilidad de realizar un suministro anual máximo de 85 hm3 a la demanda del Canal Campo del Turia, con un suministro medio de 72,2 hm3, sin que ello produzca en el resto de las demandas pérdidas en la garantía a su suministro. Para ello se establece un volumen de reserva en los embalses de Benagéber y Loriguilla de 100 hm3, el cual
garantizará el suministro al resto de demandas agrarias que tienen mayor prioridad en el sistema.

En los periodos con escasez de recursos se pueden suplir los déficits en la demanda del Canal Campo del Turia mediante el empleo de pozos de sequía. Este uso puede paliar, de forma puntual, los periodos críticos en los que no se pueda realizar suministro superficial.

8.1.1.3 Situación previsible del sistema a medio plazo

En un futuro inmediato y tras la finalización de las obras de la modernización de los riegos Tradicionales de la Acequia de Moncada y del Plan de Reutilización de aguas residuales del Área Metropolitana de Valencia (COPUT, 1998), se mejorará la garantía global del sistema y especialmente la de la zona regable del Canal Campo del Turia. Tal y como establece el artículo 23 del PHJ (CHJ, 1999).

"Los volúmenes provenientes de medidas de ahorro en los regadíos de aguas abajo del sistema de Benagéber-Loriguilla y los que provengan de la futura regulación del Bajo Turia, se destinarán a la satisfacción de las necesidades de abastecimiento urbano de las poblaciones de Ribarroja, La Eliana, Benaguacil y el resto del Camp del Turia. En el caso de que estos recursos no sean suficientes, dichas necesidades se atenderán a partir de los recursos asignados a la zona regable del Camp del Turia, mediante la correspondiente reasignación de recursos.

Al mismo tiempo se desarrollará, dentro del programa de reutilización de aguas residuales depuradas, el correspondiente a Valencia y su área metropolitana, que permita la reasignación de recursos en el Turia."

La expansión de la ciudad de Valencia en el área metropolitana de dicha ciudad va a suponer la reducción de las demandas consuntivas de estas regiones agrícolas, tal y como se establece en el Plan de Reutilización de aguas residuales del Área Metropolitana de Valencia (COPUT, 1998) (PRARV), y se corrobora con los suministros reales realizados en los últimos a estas zonas agrícolas. En la Tabla 43 se muestran las reducciones previsibles en estas demandas, donde la reducción producida...
en la demanda de los riegos tradicionales de la acequia de Moncada se deben también, en parte, a la modernización de estos riegos.

<table>
<thead>
<tr>
<th>Unidad de Demanda</th>
<th>Demanda actual (hm³/año)</th>
<th>Demanda Previa PRARV (hm³/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg Aceq Moncada</td>
<td>80,9</td>
<td>60,14</td>
</tr>
<tr>
<td>Reg Vega Valencia</td>
<td>80,2</td>
<td>71,34</td>
</tr>
</tbody>
</table>

Tabla 43. Demandas consuntivas actuales y futura de los riegos de Moncada y Vega de Valencia.

Por otra parte el propio PRARV establece la reutilización de importantes volúmenes de agua residual de la ciudad de Valencia en ambas zonas agrícolas con una garantía del 100% puesto que todos los años se dispondrá de estos volúmenes de agua residual depurada. Dicha reutilización supone una gran reducción de las necesidades a atender desde los embalses de la cuenca, que puede observarse en la tabla siguiente.

<table>
<thead>
<tr>
<th>Unidad de Demanda</th>
<th>Volumen de reutilización (hm³/año)</th>
<th>Demanda por cubrir (hm³/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg Aceq Moncada</td>
<td>12,98</td>
<td>47,16</td>
</tr>
<tr>
<td>Reg Vega Valencia</td>
<td>45,24</td>
<td>26,1</td>
</tr>
</tbody>
</table>

Tabla 44. Reutilización prevista en el PRARV para los riegos de Moncada y Vega de Valencia.

La aplicación de las medidas anteriores hace posible el reordenamiento de los recursos del sistema Turia, de forma que es posible atender con aguas superficiales del sistema las demandas urbanas actuales y futuras de los municipios de la comarca de Camp de Turia (Ribarroja del Turia, La Eliana, Benaguacil etc..), cifrándose aproximadamente en la actualidad en 8,4 hm³, y como demanda futura de 15 hm³. Además de poder atender un volumen mayor de aguas superficiales para la demanda de Pueblos Castillo cifrada en 64 hm³.

Las demandas consideradas finalmente en la situación futura previsible se resumen en la Tabla 45:

<table>
<thead>
<tr>
<th>Demanda</th>
<th>Demanda actual (hm³/año)</th>
<th>Demanda previsible (hm³/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbana Teruel</td>
<td>3,2</td>
<td>3,2</td>
</tr>
<tr>
<td>Urbana Valencia</td>
<td>31,5</td>
<td>31,5</td>
</tr>
<tr>
<td>Urbana Camp de Turia</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Reg Reserva Cabecera</td>
<td>10,0</td>
<td>10,0</td>
</tr>
<tr>
<td>Reg Campo del Turia</td>
<td>85,0</td>
<td>85,0</td>
</tr>
<tr>
<td>Reg Pueblos Castillo</td>
<td>51,9</td>
<td>64,0</td>
</tr>
<tr>
<td>Reg Aceq Moncada</td>
<td>80,9</td>
<td>47,16</td>
</tr>
<tr>
<td>Reg Vega Valencia</td>
<td>80,2</td>
<td>26,1</td>
</tr>
<tr>
<td>Total</td>
<td>342,7</td>
<td>281,96</td>
</tr>
</tbody>
</table>

Tabla 45. Demandas consuntivas previsibles por cubrir con aguas superficiales en el sistema Turia.
Tras realizar la simulación del sistema se obtienen garantías del 100 % en todas las demandas urbanas y agrícolas del sistema, salvo la demanda del Canal Campo del Turia, lo cual pone de manifiesto la gran eficiencia que se alcanza en el sistema con la aplicación de las medidas descritas.

La demanda de Campo del Turia mejora significativamente sus garantías tal y como aparece en la tabla siguiente, ya que las reservas de los embalses se mantienen en la mayoría de los años del periodo histórico por encima de la curva de reservas de 100 hm³ (véase la Figura 111).

<table>
<thead>
<tr>
<th>HIPÓTESIS</th>
<th>Garantía mensual</th>
<th>Garantía anual</th>
<th>Garantía volumétrica</th>
<th>% déficit</th>
<th>Dotación hm³/año</th>
<th>Suministro medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda de Campo del Turia 85 (hm³/año)</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>1 año</td>
<td>2 años</td>
<td>10 años</td>
</tr>
<tr>
<td>Campo Turia</td>
<td>95,6</td>
<td>85,0</td>
<td>94,5</td>
<td>100</td>
<td>200</td>
<td>285,5</td>
</tr>
</tbody>
</table>

Tabla 46. Garantías alcanzadas en la demanda de Campo del Turia.

Figura 111. Volumen almacenado en el conjunto Benageber-Loriguilla en la situación futura previsible.

Finalmente como mejora en la seguridad del sistema queda la posible utilización de aguas subterráneas en la acequia de Moncada mediante la puesta en funcionamiento de los pozos de sequía existentes, siendo éstos una reserva estratégica frente a posibles situaciones de sequía.

Si se llevan a cabo las medidas propuestas en el capítulo 9 en cuanto a la electrificación de los pozos existentes y la creación de 8 pozos nuevos en la acequia de Moncada se contaría con una capacidad de extracción de 10 hm³/año, lo que puede suponer un
incremento de garantías en la propia acequia de Moncada además de poder permitir la liberación de caudales para el resto del sistema.
8.1.2 Sistema Júcar

Mediante el modelo de simulación de la gestión del sistema Júcar se han simulado diferentes alternativas con el objetivo de analizar las garantías que presenta el sistema en la situación actual y en las previstas por el Plan Hidrológico del Júcar y el Plan Hidrológico Nacional.

La metodología empleada consiste en simular con la serie histórica (1940/41-2000/01), obtenida mediante el proceso de restitución a régimen natural, diferentes escenarios de demanda partiendo todos ellos de la situación actual que presenta el sistema (año 2001).

Debe indicarse que los resultados obtenidos no son la reproducción de las situaciones pasadas que ha tenido el sistema, sino que corresponden al comportamiento futuro que tendría el sistema si se mantienen las distintas condiciones definidas en él (escenarios de demandas, reglas de gestión, etc.).

Seguidamente se describen las reglas de gestión del sistema así como los escenarios de demanda que se consideran.

Reglas de gestión del sistema Júcar

La incorporación de los nuevos usuarios al sistema del río Júcar y la aplicación, de cara a la gestión del sistema, del reciente convenio entre la Unión Sindical de Usuarios del Júcar USUJ y el Ministerio de Medio Ambiente, plantean la necesidad de analizar y determinar las garantías de suministro a las demandas existentes en la cuenca, así como definir las normas de explotación del sistema en función de los recursos disponibles en la cuenca.

Por otro lado, en la actualidad se cuenta de forma operativa con una serie de pozos de sequía situados en el ámbito de los regadíos tradicionales del Júcar y en especial, en la Acequia Real del Júcar. La utilización de estos pozos en periodos de sequía puede paliar de forma considerable los efectos de las mismas, por lo que debe definirse la capacidad de bombeo a utilizar así como el momento de activación de estos pozos de emergencia, pues una activación anticipada puede mejorar el rendimiento del sistema.

El convenio de Alarcón establece en su estipulación cuarta dos:

“… Con el objeto de garantizar los derechos prioritarios de los usuarios integrados en USUJ se establece una reserva en Alarcón a favor de USUJ de los siguientes volúmenes propios del Júcar
excluyendo los recursos procedentes de trasvases y considerando que el volumen útil del embalse es a partir de 30 hm³.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Volumen Almacenado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octubre</td>
<td>278 hm³</td>
</tr>
<tr>
<td>Noviembre</td>
<td>287 hm³</td>
</tr>
<tr>
<td>Diciembre</td>
<td>287 hm³</td>
</tr>
<tr>
<td>Enero</td>
<td>326 hm³</td>
</tr>
<tr>
<td>Febrero</td>
<td>334 hm³</td>
</tr>
<tr>
<td>Marzo</td>
<td>326 hm³</td>
</tr>
<tr>
<td>Abril</td>
<td>311 hm³</td>
</tr>
<tr>
<td>Mayo</td>
<td>278 hm³</td>
</tr>
<tr>
<td>Junio</td>
<td>263 hm³</td>
</tr>
<tr>
<td>Julio</td>
<td>263 hm³</td>
</tr>
<tr>
<td>Agosto</td>
<td>263 hm³</td>
</tr>
<tr>
<td>Septiembre</td>
<td>263 hm³</td>
</tr>
</tbody>
</table>

Si el volumen almacenado en Alarcón no supera el indicado, no se podrá derivar agua alguna destinada a usos diferentes de los correspondientes a los miembros usuarios agrícolas de la USUJ.

No obstante lo anterior, considerando la preferencia legal de los abastecimientos a poblaciones, y sin perjuicio de lo establecido en la prescripción 3ª de esta Estipulación, el Organismo de cuenca podrá complementar esa garantía, oída la Comisión de Desembalses, por la que proporcione la regulación de volúmenes útiles del resto de embalses del Sistema Hidráulico Júcar, conforme a lo previsto en los apartados 22 y 23 del artículo 24 del Plan Hidrológico de cuenca del Júcar

Por lo tanto quedará reservado de forma absoluta y preferente a favor de los miembros de USUJ el volumen indicado procedente de la regulación del Sistema, considerando los volúmenes útiles y disponibles de cada embalse del Sistema.

En cualquier caso la explotación de la Presa de Alarcón y del conjunto del sistema Júcar, se hará con pleno respeto a la prioridad para los riegos tradicionales de la Ribera del Júcar que establece el artículo 24.1.a) del Plan Hidrológico de cuenca del Júcar y las concesiones de los regadíos tradicionales integrados en USUJ a las aguas fluyentes del río."

La curva definida se establece para los volúmenes a final de mes quedando de forma gráfica tal y como se muestra en la Figura 112.

Figura 112. Curva de reservas del Convenio de Alarcón
Por estos motivos y para conseguir una gestión optimizada del sistema Júcar es necesario definir las condiciones de gestión del sistema que tengan en consideración la utilización de los pozos de sequía y la aplicación de medidas de ahorro en periodos de escasez.

Las reglas de gestión que se han utilizado en el modelo de simulación, responden a la gestión producida en los últimos años, que se encuentra muy influenciada por la fuerte sequía sufrida en el Júcar en los años 1994/95 y 1995/96, y que ha introducido importantes criterios de racionalidad y eficiencia hídrica en la gestión del sistema.

Aún así, sería conveniente incrementar las garantías de los usos agrícolas en los periodos de sequía con medidas de anticipación a la llegada de la misma. Sin embargo, para quedar del lado de la seguridad se ha decidido mantener en el modelo de simulación la gestión producida en los últimos años.

Las reglas de gestión que se definen para el sistema se basan en los recursos disponibles en el conjunto de los embalses de Alarcón, Contreras y Tous, y que quedan establecidas en los siguientes cuatro niveles:

1. **Situación normal de recursos**

 Esta situación corresponde al caso en que el volumen almacenado en el embalse de Alarcón sea mayor que el volumen definido en la curva del Convenio, en tal caso se realizará el suministro a todas las demandas sin aplicar restricciones.

2. **Situación de escasez en Alarcón**

 Esta situación corresponde al caso en que el volumen almacenado en el embalse de Alarcón es inferior a la curva del Convenio y sin embargo el volumen almacenado en el conjunto del sistema supera dicha curva.

 En esta situación se inicia la puesta en funcionamiento de los pozos de sequía situados en la Ribera del Júcar, manteniéndose el suministro a todas las demandas del sistema.

3. **Situación de leve escasez en el conjunto del Sistema**

 Esta situación corresponde al caso en que el volumen almacenado en el conjunto de los tres embalses es inferior a la curva del Convenio y superior a 200 hm3 (incluyendo los volúmenes muertos de los embalses).
En esta situación se mantiene la extracción de agua subterránea de los pozos de sequía de la Ribera del Júcar, la cual se complementa con la aplicación de medidas de ahorro sobre las demandas agrícolas: 1) reducir el suministro total a los Riegos de la Ribera del Júcar en un 10 % y 2) reducir en un 20 % el suministro total al resto de riegos del sistema.

La adopción de estas medidas está basada en las reducciones de suministro producidas en la campaña de riegos del año 2000, donde el conjunto de embalses se encontraba próximo a los 200 hm3 y finalmente se aplicaron unos ahorros similares a los descritos.

4. **Situación de grave escasez en el conjunto del Sistema**

Esta situación corresponde al caso en que el volumen almacenado en el conjunto de los tres embalses es inferior a 200 hm3 (incluyendo los volúmenes muertos de los embalses)

En esta situación se mantiene la extracción de agua subterránea de los pozos de sequía de la Ribera del Júcar, la cual se complementa con la aplicación de mayores medidas de ahorro sobre las demandas agrícolas: 1) reducir el suministro total a los Riegos de la Ribera del Júcar en un 25 % y 2) reducir en un 30 % el suministro total al resto de riegos del sistema.

La adopción de estas medidas está basada en las reducciones de suministro producidas en la campaña de riegos del año 1996, donde el conjunto de embalses se encontraba próximo a los 100 hm3 y finalmente se aplicaron unos ahorros similares a los descritos.
Escenarios de demanda contemplados:

Los escenarios de demanda que se contemplan se dividen en dos bloques:

- **Bloque I:** correspondiente a escenarios de demanda definidos en el Plan Hidrológico de cuenca, asignaciones y reservas.

- **Bloque II:** correspondiente a la evolución de los escenarios de demanda previsibles en el sistema.

En la tabla siguiente se muestran los distintos escenarios de demanda considerados en el análisis. Debe considerarse, además, la demanda de la Mancomunidad de los Canales del Taibilla para abastecimiento del área de Alicante que se cifra entre 6,5 y 10 hm³/año en los últimos años según el Área de Explotación de CHJ. Sin embargo, se considera como una situación coyuntural que no se mantendrá en el tiempo, por lo cual no ha sido incluida en las simulaciones realizadas.

De igual forma, todas las alternativas parten con una demanda neta de aguas subterráneas de 368 hm³/año en el acuífero de la Mancha Oriental (correspondiente a una demanda bruta de 465 hm³/año). Dicha cifra se reduce en función del volumen de sustitución de bombeos definido en cada escenario.

No todos los años de la simulación es posible servir el volumen establecido en la sustitución de bombeos. Por este motivo se ha considerado que dicha sustitución se complementa con la puesta en marcha, de forma temporal en los años sin aguas superficiales, de los pozos que han sido objeto de la sustitución.

A continuación se describen detalladamente las particularidades específicas de las alternativas planteadas.
<table>
<thead>
<tr>
<th>Demanda (hm3)</th>
<th>BLOQUE I Escenarios del PHJ</th>
<th>BLOQUE II Escenarios previsibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abastecimiento Albacete</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>Abastecimiento Valencia</td>
<td>95</td>
<td>95+95</td>
</tr>
<tr>
<td>Abastecimiento Sagunto</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>Abastecimientos y pequeños regadíos de Cuenca</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Cabecera y tramo medio de los ríos Júcar y Cabriel</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Extracciones brutas por bombeo en la Mancha Oriental</td>
<td>385</td>
<td>200</td>
</tr>
<tr>
<td>Sustitución de bombeos y consolidación Mancha Oriental</td>
<td>80</td>
<td>80+65</td>
</tr>
<tr>
<td>Volumen consuntivo Central Nuclear de Cofrentes</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Regadíos Canal Jucar-Turia</td>
<td>95</td>
<td>95+30</td>
</tr>
<tr>
<td>Riegos tradicionales Júcar (Ribera Alta)</td>
<td>446</td>
<td>446-150</td>
</tr>
<tr>
<td>Riegos tradicionales Júcar (Ribera Baja)</td>
<td>279</td>
<td>279</td>
</tr>
<tr>
<td>Redotación Mancha Oriental</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>Vinalopó-Alacantí Marina Baja</td>
<td>0</td>
<td>80+90</td>
</tr>
</tbody>
</table>

Tabla 47. Escenarios de demandas según el PHJ y previsibles para el Sistema Júcar
El reparto entre las distintas demandas que conforman el grupo de Vinalopó-Alacantí y Marina Baja se realiza como figura en la Tabla 48 para las distintas alternativas, tal y como se describe en el documento “Análisis de los Sistemas Hidráulicos” de la documentación técnica del Plan Hidrológico Nacional y el Convenio suscrito entre Aguas del Júcar y la Junta Central de usuarios de la Marina Baja y el Vinalopó.

<table>
<thead>
<tr>
<th></th>
<th>PHN</th>
<th>Convenio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trasvase Marina Baja y Vinalopó</td>
<td>80 170</td>
<td>12 80 200</td>
</tr>
<tr>
<td>Abast. Marina Baja</td>
<td>10 35</td>
<td>12 11,5 35</td>
</tr>
<tr>
<td>Abast. Vinalopó</td>
<td>13 43</td>
<td>23,5 43</td>
</tr>
<tr>
<td>Regadíos Vinalopó</td>
<td>57 92</td>
<td>45 122</td>
</tr>
<tr>
<td>Total Vinalopó</td>
<td>70 135</td>
<td>69,5 165</td>
</tr>
</tbody>
</table>

Tabla 48. Reparto entre las distintas demandas de la Marina Baja y Vinalopó

BLOQUE I. ESCENARIOS DE DEMANDA DEFINIDOS EN EL PHJ.

Escenario I) Asignación del PHJ.

La sustitución de 80 hm³/año de bombeos en el acuífero de la Mancha Oriental implica la reducción de las extracciones en este acuífero, quedando un bombeo bruto de 385 hm³/año.

El objetivo de este escenario consiste en conocer las garantías que tendría el sistema con las asignaciones establecidas en el PHJ.

Escenario II) Asignación y reservas del PHJ.

La sustitución de 80+65+120 hm³/año (265 hm³/año) de bombeos en el acuífero de la Mancha Oriental, que implica la reducción de las extracciones en el mismo, quedando un bombeo bruto de 200 hm³/año.

La modernización de los regadíos de la Ribera a largo plazo, considerando la primera y segunda fase, se aplica en su totalidad a los regadíos tradicionales de la Ribera Alta, pasando el conjunto de las acequia superiores de 446 hm³ a 296 hm³.

El objetivo de este escenario es constatar la dificultad de desarrollar las reservas definidas en el PHJ con los recursos propios del río Júcar.
Escenario III) Asignación y reservas del PHJ considerando las recursos externos definidos en el Plan Hidrológico Nacional PHN.

Las demandas definidas en este escenario son idénticas al caso anterior, incluyéndose las transferencias definidas en el PHN.

El objetivo de este escenario consiste en conocer las mejoras de garantía que producirán los volúmenes procedentes del PHN.

Escenario IV) Asignación y reservas del PHJ considerando las recursos externos definidos en el Plan Hidrológico Nacional PHN, y considerando las posibles reducciones en las aportaciones hidrológicas debidas al cambio climático.

Las demandas definidas en este escenario son idénticas al caso anterior, incluyéndose las transferencias definidas en el PHN.

Este escenario se descompone a su vez en dos; el escenario “IV)a” correspondiente a una reducción de aportaciones del 5%, y el escenario “IV)b” correspondiente a una reducción de aportaciones 10%, tanto en las aportaciones propias del sistema Júcar como en el resultado de transferencias producidas al reducir las aportaciones de la cuenca cedente, en este caso la cuenca del Ebro.

El objetivo de este escenario planteado es conocer como afectará la posibilidad de existencia de una disminución de las aportaciones debida a los efectos de cambio climático.

BLOQUE II. ESCENARIOS DE DEMANDA PREVISIBLES.

Escenario V) Situación previsible a corto plazo.

Se ha considerado una sustitución de bombeos en el acuífero de la Mancha Oriental de 15 hm3/año que implica la reducción de las extracciones en el mismo, quedando un bombee bruto de 450 hm3/año.

Por otra parte, la reducción de la demanda de las acequias superiores ha sido aplicada al conjunto de los riegos tradicionales, ya que tras analizar los suministros históricos son éstas las que presentan mayor disminución respecto las cifras del PHJ, pasando de 446 a 411 hm3/año.
De igual forma se ha considerado un aumento en las demandas de las acequias inferiores, ya que al comparar los suministros reales con las cifras del PHJ se han apreciado ligeros aumentos.

Este escenario permite conocer cuáles son las garantías que presentará el sistema si persisten las demandas actuales.

Escenario VI) Situación previsible a medio plazo con la modernización de los regadíos tradicionales del Júcar (únicamente la primera fase), el trasvase al Vinalopó y sustitución de bombeos en la Mancha Oriental.

La sustitución de 80+65 hm3/año (145 hm3/año) de bombeos en el acuífero de la Mancha Oriental implica la reducción de las extracciones en el mismo, quedando un bombeo bruto de 320 hm3/año.

Por otra parte, la reducción de la demanda de las acequias superiores, así como la primera fase de la modernización de los regadíos tradicionales del Júcar, implica un ahorro de 100 hm3/año, pasando el conjunto de los mismos de 411 hm3 a 311 hm3.

Con este escenario se pretende conocer cuál será la situación del sistema si se desarrollan y finalizan las actuaciones que se encuentran en ejecución en la actualidad, conociendo las afecciones que producirán dichas actuaciones.

Alternativa VII) Situación previsible a largo plazo con modernización de los regadíos tradicionales del Júcar (incluyendo la primera y segunda fase), el trasvase al Vinalopó, la sustitución de bombeos en la Mancha Oriental y las aportaciones externas del Plan Hidrológico Nacional PHN.

La sustitución de 80+65+120 hm3/año (265 hm3/año) de bombeos en el acuífero de la Mancha Oriental implica la reducción de las extracciones en este acuífero, quedando un bombeo de 200 hm3/año.

Por otra parte, la reducción de la demanda de las acequias superiores así como la primera y segunda fase de la modernización de dichos regadíos, con un ahorro de 150 hm3/año, pasando el conjunto de los regadíos tradicionales de 411 hm3 a 261 hm3.

Con este escenario se pretende conocer la sostenibilidad del sistema a largo plazo.
Situación inicial del sistema

Para la realización de las distintas simulaciones es necesario conocer la situación actual en la que se encuentra el sistema. Fundamentalmente, y debido a su peso específico, interesa conocer la situación de reservas del acuífero de la Mancha Oriental.

En el marco del análisis de las aportaciones del tramo intermedio Alarcón-Molinar se ha efectuado la modelación del acuífero de la Mancha Oriental, obteniéndose la evolución del volumen almacenado en el mismo hasta la situación actual. De esta forma, el volumen inicial del acuífero se corresponde con el obtenido a finales del mes de septiembre de 2001 durante la restitución de las aportaciones a régimen natural.

Todas las alternativas de demanda que se plantean parten de la situación actual en la que se encuentra el acuífero.
8.1.2.1 Simulación de alternativas

Se han realizado múltiples simulaciones del sistema con los diferentes escenarios de demanda y reglas de gestión (diferentes capacidades de bombeo de los pozos de sequía existentes en los Riegos Tradicionales del Júcar), en la tabla siguiente se muestra el conjunto de alternativas planteadas.

<table>
<thead>
<tr>
<th>Denominación Alternativas</th>
<th>Reglas de Gestión</th>
<th>Pozos de Sequía Capacidad (hm3/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>X</td>
<td>20</td>
</tr>
<tr>
<td>CP20</td>
<td>X</td>
<td>29</td>
</tr>
<tr>
<td>CP29</td>
<td>X</td>
<td>71</td>
</tr>
<tr>
<td>CP71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 49. Nomenclatura de los conjuntos de alternativas realizadas.

Se ha considerado tres escenarios de bombeo de los pozos de sequía de los Riegos Tradicionales del Júcar:

- Bombeo solamente en los pozos actualmente electrificados con un máximo anual de aproximadamente 20 hm3.
- Bombeo en los meses invernales de octubre a abril, ambos inclusive, de todos los pozos de sequía existentes, lo que supone un volumen máximo de 29 hm3/año.
- Bombeo con todos los pozos de sequía existentes, lo que puede representar hasta un máximo de 71 hm3/año.

De esta forma el conjunto de alternativas simuladas bajo el grupo CP29 son aquellas en que se aplican las reglas de gestión consideradas en el apartado anterior, y además se cuenta con la utilización de los pozos de sequía existentes, extrayendo hasta un máximo de 29 hm3 al año, correspondiente a la utilización de todos los pozos de sequía en el periodo octubre-abril ambos inclusive.

Para facilitar la exposición de resultados, se acompañan seguidamente aquellas alternativas de mayor relevancia, contrastándolas entre sí. En primer lugar se describe la situación del sistema con el escenario de demanda definido por las asignaciones del Plan Hidrológico de cuenca, y con la actuación de únicamente los pozos de sequía electrificados. En segundo lugar se comparan todos los escenarios de demanda definidos con la capacidad de extracción de los pozos de sequía electrificados. En tercer lugar se
comparan las garantías y afecciones que producen las diferentes capacidades de bombeo de los pozos de sequía en el escenario previsible a medio plazo (VI). Y, finamente, se analizan las afecciones producidas a las demandas actuales del sistema tras la puesta en servicio de las transferencias al Vinalopó y a la Marina Baja, en el escenario de demanda previsible a medio plazo (VI) sin la actuación de los pozos de sequía.

En primer lugar, y para mayor claridad en el análisis de los resultados obtenidos se describe de forma detallada la simulación de la alternativa I) “Asignación del PHJ” en la hipótesis de funcionamiento máximo de los pozos de sequía de 20 hm3/año (correspondiente a los pozos electrificados en la actualidad), y posteriormente se presentan cuadros comparativos de todas las alternativas simuladas.
Alternativa I) Asignación del PHJ

El comportamiento del sistema a grandes rasgos es similar para todas las alternativas planteadas pudiéndose clasificar, por periodos, de la siguiente forma:

- En el periodo 1940 a 1980 el sistema se encuentra en un buen estado hidrológico, estando sus embalses al máximo de sus capacidades de almacenamiento.

- En el periodo 1980 a 2001, la sequía producida al inicio de la década de los 80 produce un fuerte descenso de los volúmenes almacenados en los embalses. Durante el resto de ese periodo el sistema se encuentra en todo momento con situaciones bajas de reservas en los embalses y se producen sequías que afectan a los suministros a las demandas del sistema. Éste es el periodo donde se centra el análisis de los resultados obtenidos.

En la Figura 113 se muestra la evolución del volumen embalsado en Alarcón y en el conjunto de Alarcón, Contreras y Tous.

![Volumen almacenado en los embalses](image-url)

Figura 113. Volumenes almacenados en Alarcón y en el conjunto de Alarcón Contreras y Tous, para la alternativa asignación del PHJ con la hipótesis de funcionamiento de los pozos de sequía electrificados.
De forma más detallada en la Figura 114 aparecen los mismos volúmenes almacenados desde 1980, para la mencionada alternativa.

Figura 114. Volúmenes almacenados en Alarcón, en el conjunto de Alarcón Contreras y Tous, para la alternativa asignación PHJ con la hipótesis de funcionamiento de los pozos de sequía electrificados.

Dichos resultados confirman el hecho de que, a partir de 1980, no se producen vertidos al mar desde el embalse de Tous, tal y como aparece en la Figura 115, con la excepción del año 1982.

Figura 115. Vertidos al mar desde el embalse de Tous para la alternativa asignación del PHJ con la hipótesis de funcionamiento de los pozos de sequía electrificados.
Por todos estos motivos, y a pesar de que las simulaciones han sido realizadas para todo el periodo histórico de 1940/41 a 2000/2001, a partir de este momento el análisis de resultados únicamente se ha centrado en el último periodo de la serie, desde 1980/81 a 2000/01, ya que para el resto de los años se satisfacen correctamente todas las demandas del sistema en su nivel de suministro normal.

Respecto a los suministros a la demanda urbana de Valencia, no se produce ningún déficit significativo a lo largo de la serie histórica.

Para los suministros a las demandas agrícolas, y por lo que se refiere en primer lugar a los Riegos Tradicionales del Júcar, 16 de los 61 años de la serie presentan problemas en el suministro de agua, tal y como aparece, a modo de ejemplo, en la Figura 116 que se corresponde con los suministros obtenidos para los riegos Tradicionales del Júcar.

![Figura 116. Suministros producidos al conjunto de los riegos tradicionales de la ribera del Júcar, alternativa asignación PHI con la hipótesis de funcionamiento de los pozos de sequía electrificados.](image)
Para alcanzar estos niveles de suministro en las tomas de las acequias es necesario realizar unas sueltas aproximadas desde el embalse de Tous de alrededor de 500 hm³/año tal y como se muestra en la Figura 117.

Figura 117. Sueltas del embalse de Tous con destino a los riegos de la Ribera del Júcar, alternativa asignación PHJ con la hipótesis de funcionamiento de los pozos de sequía electrificados.

De dichas sueltas, aproximadamente 80 hm³/año son con destino a los riegos de la Ribera Baja del Júcar. En la Figura 118 se muestra la evolución temporal de las sueltas destinadas a los riegos de la Ribera Baja del Júcar, la cual presenta una fuerte variabilidad en función de la mayor o menor disposición de aportaciones naturales en este tramo final del río.

Figura 118. Sueltas del embalse de Tous con destino a los riegos de la Ribera Baja del Júcar, alternativa asignación PHJ con la hipótesis de funcionamiento de los pozos de sequía electrificados.
Los niveles de suministro alcanzado por los riegos de la Ribera Alta y Baja son similares, (ver Figura 119), presentando estos últimos una mayor garantía en el suministro debido a que cuentan con los retornos procedentes de los riegos de la Ribera Alta y las aportaciones naturales del tramo final del Júcar.

Figura 119. Suministros anuales a las demandas de la Ribera Alta y Baja del Júcar, alternativa asignación PHJ con la hipótesis de funcionamiento de los pozos de sequía electrificados.

En la Tabla 50 se resumen las garantías para los riegos de la Ribera del Júcar, mostrándose el número de meses en que se produce algún déficit, y los máximos déficits porcentuales sobre la demanda anual acumulados a un año, dos años y diez años.

<table>
<thead>
<tr>
<th>Riegos</th>
<th>Nº fallos</th>
<th>% Def 1 año</th>
<th>% Def 2 año</th>
<th>% Def 10 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real y Antella</td>
<td>138</td>
<td>75,0</td>
<td>140,3</td>
<td>389,1</td>
</tr>
<tr>
<td>Escalonona y Carcagente</td>
<td>134</td>
<td>77,7</td>
<td>143,5</td>
<td>393,3</td>
</tr>
<tr>
<td>Cuatro Pueblos</td>
<td>147</td>
<td>60,7</td>
<td>106,6</td>
<td>260,9</td>
</tr>
<tr>
<td>Sueca</td>
<td>147</td>
<td>60,6</td>
<td>106,4</td>
<td>260,5</td>
</tr>
<tr>
<td>Cullera</td>
<td>147</td>
<td>60,6</td>
<td>106,7</td>
<td>261,2</td>
</tr>
</tbody>
</table>

Tabla 50. Garantías en los riegos Tradicionales del Júcar, alternativa asignación PHJ.

Del resto de demandas agrícolas del sistema, el Canal Júcar-Turia presenta mayores problemas en el suministro tal y como se muestra en la Figura 120.

Figura 120. Suministros anuales a la demanda del Canal Júcar-Turia, asignación del PHJ con la hipótesis de funcionamiento de los pozos de sequía electrificados.
Las garantías obtenidas para los riegos del Canal Júcar-Turia son:

<table>
<thead>
<tr>
<th>Riegos</th>
<th>Nº fallos</th>
<th>% Def 1 año</th>
<th>% Def 2 año</th>
<th>% Def 10 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal Júcar-Turia</td>
<td>105</td>
<td>88,9</td>
<td>177,7</td>
<td>517,2</td>
</tr>
</tbody>
</table>

Tabla 51. Garantías en los riegos del Canal Júcar-Turia, alternativa asignación del PHJ.

Respecto a la sustitución de bombeos de la Mancha Oriental, resulta que la demanda no es posible servirla en su totalidad con aguas superficiales durante todo el periodo de simulación, con un volumen medio servido de 72 hm3/año. En los años que no es posible servirla con aguas superficiales se complementa con la puesta en funcionamiento de los pozos existentes. En la Figura 121 se muestra el volumen de agua servido con aguas superficiales y los volúmenes de agua subterránea necesarios para complementar la sustitución.

La puesta en funcionamiento de la sustitución de bombeos en la Mancha Oriental produce que las detracciones del acuífero sobre el río Júcar se estabilicen en alrededor de 288 hm3/año y evolucionel tal y como aparece en la Figura 122, donde se aprecia que se supera dicho valor en los últimos años debido a que la falta de recursos superficiales en el embalse de Alarcón hace necesaria la puesta en funcionamiento de los pozos sustituidos, incrementándose entonces las detracciones del acuífero al río.
Figura 122. Evolución de las detracciones al río Júcar por el acuífero de la Mancha Oriental, alternativa asignación del PHJ con la hipótesis de funcionamiento de los pozos de sequía electrificados.

Finalmente, los retornos que se producen a la Albufera de Valencia debido a los riegos de la Ribera Alta del Júcar, son aproximadamente de 70 hm3/año, entre retornos de origen superficial y de origen subterráneo. En la Figura 123 se muestra la evolución de dichos retornos a la Albufera, apreciándose que la disminución en los suministros a los riegos de la Ribera Alta se traduce en una disminución en los retornos producidos a la Albufera. También se ha incluido en la figura los volúmenes extraídos por los pozos de sequía situados en la Ribera alta del Júcar.

Figura 123. Evolución de los retornos de la Ribera Alta a la Albufera de Valencia, alternativa asignación del PHJ con la hipótesis de funcionamiento de los pozos de sequía electrificados.
Comparación de alternativas con una capacidad de extracción anual de agua de los pozos de sequía de la Ribera del Júcar de 20 hm3/año (correspondiente a los pozos electrificados)

A continuación se resumen los resultados obtenidos en el conjunto de escenarios planteados, comparando las garantías producidas en las demandas representativas del sistema y analizando los principales flujos de agua existentes.

Un buen indicador del nivel de utilización de los recursos propios de la cuenca consiste en comparar los volúmenes de agua almacenados a final del mes de septiembre en cada año para las distintas alternativas (figura siguiente). El sistema presenta en todas las alternativas fuertes problemas de disponibilidad de agua en el final de todas las campañas a partir del año 1980.

![Figura 124. Volumen almacenado en los embalses de Alarcón Contreras y Tous a final del mes de septiembre para las distintas alternativas.](image-url)
De la figura anterior las alternativas I) y V) son las que presentan niveles más altos de volumen de agua embalsado al inicio de la simulación, quedando todas las alternativas con volúmenes muy bajos en los últimos años de la simulación realizada.

También se aprecia que las alternativas II), IV) y VI) tienen una utilización muy intensiva de los recursos, lo cual se confirma al analizar las garantías que presenta la demanda “Acequia Real y Antella” (Tabla 52), que es representativa de las demandas existentes en la Ribera Alta del Júcar. En dicha tabla se muestra el nº de fallos mensuales, la garantía mensual y los máximos déficits acumulados a 1, 2 y 10 años.

Tabla 52. Número de fallos mensuales y criterios de garantía de la demanda agrícola de la Acequia Real del Júcar (Ribera Alta del Júcar).

<table>
<thead>
<tr>
<th>Alternativa</th>
<th>Nº fallos</th>
<th>Gm %</th>
<th>% Def 1 año</th>
<th>% Def 2 año</th>
<th>% Def 10 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>I)</td>
<td>138</td>
<td>81,1</td>
<td>75,0</td>
<td>140,3</td>
<td>389,1</td>
</tr>
<tr>
<td>II)</td>
<td>199</td>
<td>72,8</td>
<td>77,6</td>
<td>151,1</td>
<td>529,8</td>
</tr>
<tr>
<td>III)</td>
<td>121</td>
<td>83,5</td>
<td>60,9</td>
<td>110,8</td>
<td>360,1</td>
</tr>
<tr>
<td>IV)a</td>
<td>154</td>
<td>79,0</td>
<td>70,9</td>
<td>133,2</td>
<td>450,2</td>
</tr>
<tr>
<td>IV)b</td>
<td>187</td>
<td>74,5</td>
<td>78,8</td>
<td>149,3</td>
<td>542,7</td>
</tr>
<tr>
<td>V)</td>
<td>140</td>
<td>80,9</td>
<td>76,5</td>
<td>145,6</td>
<td>421,6</td>
</tr>
<tr>
<td>VI)</td>
<td>118</td>
<td>83,9</td>
<td>75,5</td>
<td>139,6</td>
<td>440,3</td>
</tr>
<tr>
<td>VII)</td>
<td>123</td>
<td>83,2</td>
<td>61,1</td>
<td>108,1</td>
<td>351,5</td>
</tr>
</tbody>
</table>

La demanda de la Acequia de Sueca, representativa de las demandas de la Ribera Baja del Júcar, presenta un comportamiento similar, pero con mayores niveles de garantía, tal y como se aprecia en la tabla siguiente.

Tabla 53. Número de fallos mensuales y criterios de garantía de la demanda agrícola de la Acequia de Sueca (Ribera Baja del Júcar).

<table>
<thead>
<tr>
<th>Alternativa</th>
<th>Nº fallos</th>
<th>Gm %</th>
<th>% Def 1 año</th>
<th>% Def 2 año</th>
<th>% Def 10 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>I)</td>
<td>147</td>
<td>79,9</td>
<td>60,6</td>
<td>106,4</td>
<td>260,5</td>
</tr>
<tr>
<td>II)</td>
<td>294</td>
<td>59,8</td>
<td>67,0</td>
<td>125,1</td>
<td>401,1</td>
</tr>
<tr>
<td>III)</td>
<td>218</td>
<td>70,2</td>
<td>60,7</td>
<td>107,1</td>
<td>303,5</td>
</tr>
<tr>
<td>IV)a</td>
<td>247</td>
<td>66,3</td>
<td>60,9</td>
<td>108,1</td>
<td>350,8</td>
</tr>
<tr>
<td>IV)b</td>
<td>286</td>
<td>60,9</td>
<td>65,3</td>
<td>124,2</td>
<td>415,6</td>
</tr>
<tr>
<td>V)</td>
<td>156</td>
<td>78,7</td>
<td>66,5</td>
<td>113,9</td>
<td>325,1</td>
</tr>
<tr>
<td>VI)</td>
<td>191</td>
<td>73,9</td>
<td>65,7</td>
<td>120,6</td>
<td>361,6</td>
</tr>
<tr>
<td>VII)</td>
<td>211</td>
<td>71,2</td>
<td>61,1</td>
<td>108,8</td>
<td>312,0</td>
</tr>
</tbody>
</table>

Respecto del Canal Júcar Turia, se observa en la Tabla 54 la necesidad de seguir manteniendo políticas de uso conjunto para el mismo, ya que prácticamente en los dos
peores años de la sequía no es posible realizar suministros superficiales a dicha demanda.

<table>
<thead>
<tr>
<th>Canal Júcar Turia</th>
<th>Alternativa</th>
<th>Nº fallos</th>
<th>Gm %</th>
<th>% Def 1 año</th>
<th>% Def 2 año</th>
<th>% Def 10 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>I)</td>
<td>105</td>
<td>85,7</td>
<td>88,9</td>
<td>177,7</td>
<td>517,2</td>
<td></td>
</tr>
<tr>
<td>II)</td>
<td>215</td>
<td>70,6</td>
<td>99,3</td>
<td>193,7</td>
<td>793,7</td>
<td></td>
</tr>
<tr>
<td>III)</td>
<td>160</td>
<td>78,1</td>
<td>90,4</td>
<td>179,2</td>
<td>584,9</td>
<td></td>
</tr>
<tr>
<td>IV)a</td>
<td>183</td>
<td>75,0</td>
<td>99,3</td>
<td>193,7</td>
<td>708,2</td>
<td></td>
</tr>
<tr>
<td>IV)b</td>
<td>210</td>
<td>71,3</td>
<td>99,3</td>
<td>197,2</td>
<td>799,8</td>
<td></td>
</tr>
<tr>
<td>V)</td>
<td>112</td>
<td>84,7</td>
<td>93,6</td>
<td>180,4</td>
<td>621,2</td>
<td></td>
</tr>
<tr>
<td>VI)</td>
<td>141</td>
<td>80,7</td>
<td>99,3</td>
<td>193,7</td>
<td>691,7</td>
<td></td>
</tr>
<tr>
<td>VII)</td>
<td>154</td>
<td>79,0</td>
<td>92,1</td>
<td>180,9</td>
<td>615,0</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 54. Número de fallos mensuales y criterios de garantía de la demanda agrícola del Canal Júcar-Turia.

Respecto a los abastecimientos, la Ciudad de Valencia (representativa también del abastecimiento a Sagunto) presenta unos elevados índices de suministro (Figura 125), con elevadas garantías en la mayor parte de las alternativas. Sin embargo, existen algunos años con problemas que hacen que, por ejemplo, la alternativa II) “asignación y reservas establecidas en el PHJ” presente valores de garantía que no sería aceptables.

Figura 125. Suministros a la demanda urbana de Valencia en las distintas alternativas planteadas.
En la Tabla 55 se resumen los valores medios anuales de un grupo de variables de flujo, que son: Salidas de Tous destinadas al conjunto de riegos de la Ribera del Júcar (“Sal Tous”), Salidas de Tous destinadas a los riegos de la Ribera Baja (“Tous Inf”), vertidos desde el embalse de Tous al mar (“Vertidos”), salidas totales a la Albufera de Valencia procedentes de los retornos de riegos de la Ribera Alta, volumen medio suministrado a la sustitución de bombeos y redotación de la Mancha Oriental (“sustituido y redot.”) y volumen medio de extracciones necesarias para complementar la sustitución de bombeos (“CompSubt”).

<table>
<thead>
<tr>
<th>Varios</th>
<th>Alternativa</th>
<th>Sal Tous</th>
<th>Tous Inf</th>
<th>Sal Albufera</th>
<th>Sustituido y redot.</th>
<th>Comp Subt</th>
<th>Trasf MB y Vinalopó</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I)</td>
<td>480,5</td>
<td>81,9</td>
<td>133,6</td>
<td>58,1</td>
<td>72,3</td>
<td>7,7</td>
</tr>
<tr>
<td></td>
<td>II)</td>
<td>313,8</td>
<td>87,5</td>
<td>15,3</td>
<td>18,0</td>
<td>188,2</td>
<td>76,8</td>
</tr>
<tr>
<td></td>
<td>III)</td>
<td>353,5</td>
<td>98,7</td>
<td>99,1</td>
<td>21,4</td>
<td>213,5</td>
<td>51,5</td>
</tr>
<tr>
<td></td>
<td>IVa</td>
<td>339,6</td>
<td>97,6</td>
<td>61,1</td>
<td>19,3</td>
<td>198,4</td>
<td>66,7</td>
</tr>
<tr>
<td></td>
<td>IVb</td>
<td>322,0</td>
<td>94,1</td>
<td>28,3</td>
<td>17,7</td>
<td>182,8</td>
<td>82,1</td>
</tr>
<tr>
<td></td>
<td>V)</td>
<td>473,8</td>
<td>107,6</td>
<td>164,1</td>
<td>50,4</td>
<td>13,6</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>VI)</td>
<td>388,3</td>
<td>118,9</td>
<td>82,8</td>
<td>26,6</td>
<td>122,3</td>
<td>22,7</td>
</tr>
<tr>
<td></td>
<td>VII)</td>
<td>353,1</td>
<td>127,9</td>
<td>91,7</td>
<td>15,1</td>
<td>217,9</td>
<td>47,1</td>
</tr>
</tbody>
</table>

Tabla 55. Valores medios de sueltas necesarias del embalse de Tous, retornos producidos a la Albufera, volumen sustituido en el acuífero de la ancha Oriental y volumen trasferido a la Marina Baja y el Vinalopó.

De la Tabla 55 se extraen las siguientes conclusiones:

- Tras la modernización de los regadíos tradicionales, las sueltas medias necesarias desde el embalse de Tous para los riegos de la Ribera del Júcar pasan de 470 a 360 hm³/año, lo cual supone un ahorro real de unos 110 hm³/año.

- De igual forma, la modernización de los regadíos tradicionales hace que de los 360 hm³/año de sueltas de Tous 130 sean con destino a los riegos de la Ribera Baja del Júcar, frente a los 100 necesarios anteriormente.

- La evolución de los vertidos al mar está muy asociada al nivel de utilización del agua en la cuenca. En las alternativas con mayor uso de agua y menor garantía en las demandas los vertidos son menores y a la inversa.
Las salidas a la Albufera de Valencia procedentes de los retornos de riego de la Ribera Alta se reducen de forma considerable tras la modernización de los regadíos tradicionales, pasando éstos de 55 a 20 hm³/año.

Respecto al volumen sustituido en el acuífero de la Mancha Oriental, se aprecia como en las alternativas II) y IV) no es posible mantener los niveles de suministro superficial comprometidos, por lo cual es necesario mantener fuertes extracciones de agua en el acuífero en los periodos secos.

En relación con este último punto, en la Figura 126 se muestra la evolución de las detracciones del acuífero de la Mancha Oriental sobre los caudales circulantes en el río Júcar, apreciándose como las alternativa II), VII), IV) y sobre todo la III) tienden a disminuir el nivel de detracciones hasta los últimos años, donde la fuerte sequía hace necesaria, de nuevo, la puesta en funcionamiento de multitud de pozos en la Mancha y, por lo tanto, aumentan de nuevo las detracciones en el río.

De la Figura 126 se obtiene que las detracciones se encuentran entre los 200 y 350 hm³/año para los últimos años de la simulación, concentrándose en el entorno de los 300 hm³/año.
Las transferencias al Vinalopó y la Marina Baja obtenidas son las necesarias para suplir los déficits existentes en dichos sistemas, habiéndose tenido ya en cuenta en aquellas alternativas que corresponda las transferencias previsibles del PHN.

Figura 127. Transferencias del río Júcar al Vinalopó y la Marina Baja para cada una de las alternativas planteadas.
Efectos en el sistema debidos a distintas capacidades de bombeo para los pozos de sequía de la Ribera Alta del Júcar

Para analizar los efectos en el sistema de las distintas capacidades de bombeo de los pozos de sequía de la Ribera del Júcar se ha utilizado el escenario de demanda VI, correspondiente a la situación previsible del sistema a medio plazo.

En la Figura 128 se observa la reducción en los déficits acumulados en la demanda de la Acequia Real y Antella a medida que aumenta la capacidad de bombeo utilizada en las situaciones de sequía.

Figura 128. Bombeo medio producido frente déficits acumulados a 1, 2 y 10 años en la acequia Real del Júcar, para el escenario de demanda VI (situación previsible del sistema a medio plazo).

El aumento de las extracciones de agua subterránea en la zona de los regadíos tradicionales del Júcar, implica una ligera mejora en los déficits acumulados de la acequia de Sueca, la cual es representativa de todos los riegos de la Ribera Baja del Júcar.

Figura 129. Bombeo medio producido frente déficits acumulados a 1, 2 y 10 años en la acequia de Sueca, para el escenario de demanda VI (situación previsible del sistema a medio plazo).
Por otra parte, los incrementos en las extracciones de aguas subterráneas suponen la necesidad de incrementar ligeramente las sueltas de agua del embalse de Tous con destino a los riegos de la Ribera Baja del Júcar, y una ligera disminución en los retornos de riego producidos a la Albufera, ya que estos bombeos reducen los volúmenes de agua existentes en el acuífero de la Plana de Valencia, fundamentalmente durante los años de la sequía.

Figura 130. Contraste entre las extracciones medias realizadas y los retornos existentes a la Albufera de Valencia y las Sueltas necesarias para los riegos de la Ribera Baja del Júcar.

Figura 131. Contraste entre retornos a la Albufera de Valencia y las extracciones de los pozos de sequía de los regadíos tradicionales de la Ribera Alta.
De los análisis realizados se concluye que el aumento en la utilización de los pozos de sequía existentes en la zona de los regadíos tradicionales del Júcar supone una importante mejora en la garantía al suministro de esta demanda, no afectando e incluso mejorando ligeramente la garantía de los riegos de la Ribera Baja del Júcar. Como afecciones producidas por la utilización de estos pozos de sequía aparecen las reducciones en los retornos de riego de la Ribera Alta a la Albufera de Valencia, pasando de un retorno medio de 30 hm3/año a 25 hm3/año, siendo nulo este retorno en los años de mayor utilización de los pozos. También se produce la necesidad de aumentar las sueltas del embalse de Tous con destino a los riegos de la Ribera Baja, pasando de 117 a 123 hm3/año.

Esta reducción de retornos a la Albufera de Valencia quedaría cubierta con la futura reutilización de las aguas residuales urbanas de la Ciudad de Valencia tratadas en la depuradora de Pinedo, estando prevista de forma inmediata la derivación de un volumen por motivos medioambientales de 31 hm3/año (1 m3/s).

En cuanto a las afecciones a los drenajes naturales del acuífero de la Plana Sur se ha simulado con el modelo matemático distribuido MODFLOW estas alternativas de uso conjunto. En la Figura 132 y Figura 133 puede el efecto sobre los bombeos continuados de 29 hm3/año sobre los niveles piezométricos y los drenajes naturales.

Los mayores descensos piezométricos se producen en L’Alcudia y Guadassuar siendo estos de unos 3.5 m en el bombeo continuado de 71 hm3 y de unos 2 m aproximadamente en el bombeo de 29 hm3 que es el caso representado en la Figura 132. Los descensos en la línea imaginaria Alzira-Silla son prácticamente nulos, lo que provoca como se puede ver en la Figura 133 unas bajas afecciones a los drenajes naturales al mar del acuífero apenas 2 hm3/año. Por el contrario los descensos en la zona de L’Alcudia y Guadassuar disminuyen los drenajes al río Verde y por lo tanto al Júcar, todos estos efectos han sido contemplados en las simulaciones con el modelo global del sistema.

Por último indicar que el efecto de un bombeo continuado de 29 hm3 sobre el acuífero provoca una disminución de drenajes al Júcar de 21.1 hm3/año, mientras que la Albufera vería disminuida sus recargas subterráneas en unos 5.6 hm3/año. Estos valores dentro del balance global del acuífero son perfectamente sostenibles, pudiéndose incrementar durante los períodos secos el bombeo hasta 71 hm3.
En el anejo F5 se analizan con detalle las afecciones al acuífero de estas alternativas de gestión de uso conjunto además de los efectos sobre el acuífero de la modernización de los regadíos tradicionales.
Figura 132. Efecto de los bombeos continuados de 29 hm3 de los pozos de sequía de los riegos tradicionales del Júcar.: Isodescensos en el acuífero a finales de septiembre
Figura 133. Disminución de drenajes del acuífero debido al uso conjunto en situación permanente de bombeo continuo de 29 hm³
Afecciones producidas al sistema debidas a las transferencias al Vinalopó

Como aparece en la Figura 134, las afecciones producidas a los volúmenes suministrados a los riegos tradicionales del Júcar debido a las transferencias de agua previstas a los sistemas Vinalopó y Marina Baja, son de escasa entidad en la situación previsible a medio plazo (VI), ya que los suministros realizados con la existencia de transferencias del Júcar al Vinalopó son muy similares a los que se realizaría si no existiese esta transferencia.

Figura 134. Suministros en los riegos tradicionales del Júcar en las alternativas de existencia y no existencia de transferencias de agua a los sistemas Vinalopó y Marina Baja.

En esta situación del sistema, previsible a medio plazo (VI), se obtiene un volumen medio de transferencias de 72,2 hm³/año, tal y como se aprecia en la Figura 135.

Figura 135. Transferencias a la Marina Baja y al Vinalopó
8.2 SIMULACIÓN CON LOS MODELOS DESARROLLADOS EN SITUACIONES DE SEQUÍA

Para el análisis de la gestión de los sistemas Júcar y Turia en situaciones de sequía se dispone del sistema de apoyo a la decisión (SAD) en materia de gestión del recurso con especial énfasis en la gestión anticipada de sequías, implantado en el Área de Explotación de CHJ por el DIHMA durante el desarrollo del Convenio “Implantación en la CHJ de Herramientas de decisión en materia de Explotación de Recursos Hídricos” (DIHMA, 2001), y que ha sido aplicado dentro de este trabajo en la campaña de 2001/02 en el proceso de toma de decisiones de las comisiones de desembalse del río Júcar.

Mediante la utilización de esta herramienta al inicio o a lo largo de cada campaña es posible conocer, desde el punto de vista probabilístico, como quedará el sistema al finalizar la misma o la siguiente. De esta forma es posible poner en funcionamiento de forma anticipada las acciones necesarias para la mitigación de los efectos de la sequía, constituyéndose esta metodología en un potente indicador de alarma temprana del sistema frente a situaciones de escasez de recursos hídricos, y permitiendo cuantificar los efectos que tendrán cada una de las medidas propuestas.

El SAD, a partir de la información sobre el estado de las reservas en los embalses, los caudales recientes en los ríos, y el estado de los acuíferos, proporciona información sobre los riesgos de fallo del sistema que se afrontan en los meses del horizonte futuro (de anticipación). La estimación de dichos riesgos se lleva a cabo mediante la simulación de múltiples escenarios futuros con condiciones iniciales iguales a las del momento de la consulta, y la obtención de las probabilidades de fallo del suministro a las demandas, y de las probabilidades de estado de embalse. La metodología queda ampliamente desarrollada en los anejos G2 exponiéndose aquí un resumen de los resultados obtenidos.

Para el sistema Júcar se ha realizado mensualmente, para el área de Explotación de CHJ, el cálculo de las probabilidades de fallo en el suministro a las demandas y de las probabilidades de estado de embalse. Los resultados obtenidos han sido presentados en cada una de las comisiones de desembalse realizadas a lo largo de la campaña, con lo cual ha quedado manifiesta la operatividad del sistema implantado.
Se ha efectuado el cálculo de las probabilidades de fallo en el suministro a las demandas y la probabilidad de estado de embalse en el mes de octubre y diciembre de 2001, y en los meses de enero, febrero, marzo abril, mayo, junio y julio de 2002, de forma que se ha tenido un seguimiento mensual de la campaña.

Para cada uno de estos meses y distintas hipótesis de suministro a las demandas se han obtenido los siguientes resultados:

1. Análisis de las probabilidades de fallo en todas las demandas y la probabilidad de estado de los embalses a final de campaña, utilizando escenarios sintéticos de aportaciones obtenidos con el modelo estocástico ajustado para el periodo 1940/41-1999/00 y el modelo estocástico de aportaciones ajustado para el periodo 1980/81-1999/00.

2. Análisis determinístico del sistema utilizando aportaciones extraídas de la serie histórica, como la aportación media, o aportaciones asociadas a distintos percentiles.

Todos estos resultados se adjuntan en el anejo G2b2

Durante todo el año hidrológico 2001/2002 se ha utilizado el SSD para estimación de riesgo de sequía basado en la simulación múltiple de 2000 escenarios hidrológicos futuros. Así, en cada mes se han estimado las probabilidades de fallo de las distintas demandas y las probabilidades de estado de los embalses durante los meses de dicho año hidrológico. A la vista de la importancia que se le presta en las comisiones de desembalse al estado de almacenamiento que se pueda tener en el conjunto de los tres embalses principales (Alarcón, Contreras y Tous) a final de campaña, también se ha obtenido la función de distribución acumulada de probabilidades del estado conjunto de dichos embalses a finales de Octubre de 2002. Dichas estimaciones se han efectuado para un suministro tipo igual al suministro realizado durante la campaña 2000/2001, y si los riesgos estimados con ese suministro se consideraban inadmisibles, se procedía a introducir medidas de mitigación (fundamentalmente restricciones y activación de pozos de sequía) y estimar la variación de riesgos que dichas medidas producían. Así hasta encontrar un conjunto de medidas que produjera unos valores admisibles de riesgo. A título de ejemplo, se expone en el subapartado siguiente el análisis correspondiente a la situación del mes de Abril de 2002.

Finalmente, para el sistema Turia se han desarrollado todos los elementos necesarios para la estimación de probabilidades de fallo en el suministro a las demandas o de las
probabilidades de estado de embalse, de forma que el modelo se encuentra operativo y disponible para su utilización.

Como ejemplo se muestra a continuación parte de los resultados correspondientes al Sistema Júcar para la previsión realizada para el mes de abril de 2002.

Resultados correspondientes a las estimaciones de riesgo de sequía en Abril de 2002

El estado del sistema de la cuenca del Júcar a 1 de Abril de 2002 era el siguiente:

- Los valores de los volúmenes almacenados en los embalses de Alarcón, Contreras y Tous pueden verse en la Figura 136 con un volumen total conjunto de 409,01 hm3.

- Las aportaciones en los dos meses anteriores (Febrero y Marzo de 2002) en los distintos puntos de la cuenca pueden verse en la misma figura: En el mes de Febrero la aportación conjunta corresponde al percentil 5% de las aportaciones históricas, mientras que el de Marzo corresponde al percentil 8%. Estos valores denotan aportaciones muy bajas, en la misma línea de todo el acumulado del año hidrológico 2001/02 hasta el 1 de Abril, que han sido de 396 hm3, lo que supone estar en el percentil 1% de las aportaciones históricas acumuladas, o lo que es lo mismo, el peor registro de toda la historia de observaciones.

Con los datos correspondientes a las aportaciones en los meses anteriores como valores iniciales, se generaron 2000 escenarios futuros, utilizando el modelo estocástico calibrado, según se describe en el anejo G2b1.

Utilizando como valores de demanda los suministros efectuados en la campaña 2000/2002, y que pueden verse en la Figura 136, se realizaron las simulaciones múltiples, cuyos resultados en términos de probabilidad y riesgo son los siguientes:

- En la Figura 137 pueden verse que las probabilidades de fallo para demandas seleccionadas del sistema para todos los meses remanentes de la campaña, hasta Octubre 2002. Como puede verse, las probabilidades de fallo en el mes de Septiembre con cualquier valor de déficit alcanzan el 35% en los riegos del Canal Júcar-Turia, con un 30% de probabilidades de fallo para déficits entre el 75% y el 100% de la demanda mensual. En el caso de la Ribera Alta, las probabilidades de fallo son casi del 25%, mientras que en la Ribera Baja son menores, pero próximas al 15%.

- En la misma figura se pueden observar las probabilidades de almacenamiento conjunto en los tres embalses (Alarcón, Contreras y Tous), con unas probabilidades elevadas (*entre el 85% y el 98*) de que en los meses de verano dicho almacenamiento conjunto se sitúe por debajo de los 195 hm3.
EN LA FIGURA 136 PUEDE VERSE LA FUNCIÓN DE PROBABILIDAD DE EXCEDENCIA DEL MENCIONADO ALMACENAMIENTO CONJUNTO PARA FINES DEL MES DE OCTUBRE DE 2002, CON SOLO UN 22% DE PROBABILIDAD DE QUE Dicho VOLUMEN SUPERE LOS 200 hm³. ESTA CIRCUNSTANCIA SE CONSIDERA BASTANTE ARRIESGADA DE CARA A AFRONTAR LA CAMPAÑA SIGUIENTE.

A LA VISTA DE LOS RESULTADOS, SE CONSIDERA ESTABLECER ALGÚN TIPO DE MEDIDAS PARA DISMINUIR LOS RIESGOS. UNA DE LAS POSIBLES MEDIDAS ES LA DISMINUCIÓN DE LOS SUMINISTROS A RIEGOS EN UN 20% CON RESPECTO A LOS VALORES DE LA CAMPAÑA 2000/2001. LOS SUMINISTROS RESULTANTES PUEDEN VERSE EN LA FIGURA 139. UTILIZANDO DICHAOS VALORES, SE REALIZARON NUEVAS SIMULACIONES MÚLTIPLES, CUYOS RESULTADOS EN TÉRMINOS DE PROBABILIDAD Y RIESGO SON LOS SIGUIENTES:

- EN LA FIGURA 138 PUEDE VERSE QUE LAS PROBABILIDADES DE FALLO PARA LOS RIEGOS DEL CANAL JÚCAR-TURIA SE SITÚAN EN UN 9% PARA CUALQUIER VALOR DE DÉFICIT, Y QUE PARA LA RIBERA ALTA SE REDUCEN AL 6% PARA CUALQUIER VALOR DE DÉFICIT, Y PARA LA RIBERA BAJA SÓLO ALCANZAN UN 1,5%.

- EN LA MISMA FIGURA SE VE QUE LA PROBABILIDAD DE QUE EL VOLUMEN EMBALSADO CONJUNTO SE SITÚE POR DEBAJO DE 195 hm³ EN LOS MESES DE VERANO HAY DESCENDIDO BASTANTE, MIENTRAS QUE EN LA FIGURA 139 SE VE QUE EXISTE MÁS DE UN 50% DE PROBABILIDAD DE QUE EL VOLUMEN CONJUNTO SUPERE LOS 200 hm³ A FINES DE OCTUBRE DE 2002. ESTA SITUACIÓN SE CONSIDERA MÁS SATISFACTORIA QUE LA ANTERIOR.

ESTAS INFORMACIONES SUMINISTRADAS POR EL SISTEMA SOporte DE DECISIÓN FUERON CONSIDERADAS EN LA CORRESPONDIENTE REUNIÓN DE LA COMISIÓN DE DESEMBALSE, Y TENIDAS EN CUENTA EN LAS DECISIONES FINALMENTE ADOPTADAS. ENTRE ESTAS DECISIONES, ADemás DE LAS RESTRICCIONES A LOS SUMINISTROS PARA RIEGO, SE INCLUYÓ LA UTILIZACIÓN CONJUNTA DE AGUAS SUPERFICIALES Y SUBTERRANEAS PROPORCIONADA POR LOS POZOS DE SEQUÍA EN LA ZONA DE LA ACEQUIA REAL DEL JÚCAR PARA LIBERAR VOLUMENES DE AGUA SUPERFICIAL EN ALARCÓN QUE PUDIERAN SER SUMINISTRADOS AL ABASTECIMIENTO DE LA MARINA BAJA.
Probabilidad de Excedencia.
Total Alarcon+Contreras+Tous (Oct - 2002)

Datos de la Simulación.
Inicio de la Simulación: Abril de 2002
Número de series simuladas: 2000

Volúmenes iniciales (Hm3)
Día 1-4-02
Alarcón: 188.71
Contreras: 133.71
Tous: 86.59

Aportaciones iniciales (Hm3/mes)
Febbrero-02 (5%) Marzo-02 (8%)
Alarcón 9.14 19.54
Molinar 21.6 18.62
Contreras 8.78 10.59
Tous 8.74 11.12
Ribera Baja 18.58 15.56
Total Oct-Mar: 396 (1%)

Figura 136. Volumen de agua almacenado en Alarcón Contreras y Tous a final de octubre de 2002 asociado a distintas probabilidades. Previsión realizada el 1 de abril de 2002.
Simulación Abril de 2002. Probabilidades de Fallo de demandas y de Estado de volumen de embalse total

Figura 137. Probabilidades de estado de embalse y de fallo en el suministro a las demandas en la campaña 2002. Previsión realizada el 1 de abril de 2002.
Probabilidad de Excedencia

Total Alarcon+Contreras+Tous (Oct - 2002)

|-------------------------|--|----------------------------------|

Volúmenes iniciales (Hm3)
- Día 1-4-02
 - Alarcón: 188.71
 - Contreras: 133.71
 - Tous: 86.59

Aportaciones iniciales (Hm3/mes)
- Febrero-02 (5%)
 - Alarcón: 9.14
 - Molinar: 21.6
 - Contreras: 8.78
 - Tous: 8.74
- Marzo-02 (8%)
 - Alarcón: 19.54
 - Molinar: 18.62
 - Contreras: 10.59
 - Tous: 11.12

Total Oct-Mar: 396 (1%)

**Figura 138. Volumen de agua almacenado en Alarcón Contreras y Tous a final de octubre de 2002 asociado a distintas probabilidades. Previsión realizada el 1 de abril de 2002 considerando una reducción en el suministro agrícola de un 20%.”

RESTRICTIÓN DE LAS DEMANDAS AGRÍCOLAS DEL 20%

<table>
<thead>
<tr>
<th>Demandas hm3/mes</th>
<th>abr</th>
<th>may</th>
<th>jun</th>
<th>jul</th>
<th>ago</th>
<th>sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escalon</td>
<td>1.82</td>
<td>1.97</td>
<td>4.75</td>
<td>5.36</td>
<td>5.36</td>
<td>4.24</td>
</tr>
<tr>
<td>Carcagente</td>
<td>0.92</td>
<td>0.79</td>
<td>2.01</td>
<td>2.14</td>
<td>2.57</td>
<td>2.49</td>
</tr>
<tr>
<td>Antella</td>
<td>0.62</td>
<td>0.69</td>
<td>0.83</td>
<td>0.86</td>
<td>0.86</td>
<td>0.83</td>
</tr>
<tr>
<td>Ac. Real</td>
<td>17.20</td>
<td>22.44</td>
<td>33.63</td>
<td>36.13</td>
<td>37.25</td>
<td>23.50</td>
</tr>
<tr>
<td>Acequias Superiores</td>
<td>20.56</td>
<td>25.89</td>
<td>41.22</td>
<td>44.49</td>
<td>46.03</td>
<td>31.06</td>
</tr>
<tr>
<td>Cuatro Pueblos</td>
<td>1.08</td>
<td>5.63</td>
<td>3.97</td>
<td>4.49</td>
<td>4.00</td>
<td>0.67</td>
</tr>
<tr>
<td>Sueca</td>
<td>3.99</td>
<td>21.86</td>
<td>19.66</td>
<td>22.55</td>
<td>20.33</td>
<td>5.22</td>
</tr>
<tr>
<td>Cullera</td>
<td>7.55</td>
<td>13.08</td>
<td>12.55</td>
<td>12.97</td>
<td>10.60</td>
<td>2.45</td>
</tr>
<tr>
<td>Cullera4Pueblos</td>
<td>8.63</td>
<td>18.71</td>
<td>16.52</td>
<td>17.46</td>
<td>14.60</td>
<td>3.13</td>
</tr>
<tr>
<td>Acequias inferiores</td>
<td>12.62</td>
<td>40.57</td>
<td>36.19</td>
<td>40.01</td>
<td>34.93</td>
<td>8.34</td>
</tr>
<tr>
<td>Total Ríbera</td>
<td>33.18</td>
<td>68.46</td>
<td>77.41</td>
<td>84.49</td>
<td>85.95</td>
<td>39.41</td>
</tr>
<tr>
<td>Canal Jucar-Turia</td>
<td>4.41</td>
<td>4.22</td>
<td>5.44</td>
<td>7.18</td>
<td>8.11</td>
<td>7.46</td>
</tr>
<tr>
<td>Sagunto</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>Albacete</td>
<td>0.00</td>
<td>0.00</td>
<td>1.44</td>
<td>1.44</td>
<td>1.44</td>
<td>1.44</td>
</tr>
<tr>
<td>Marina baja</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Recarga Ac Macha</td>
<td>0.00</td>
<td>1.20</td>
<td>1.20</td>
<td>2.40</td>
<td>2.40</td>
<td>1.20</td>
</tr>
<tr>
<td>Taibilla</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Demanda Total</td>
<td>52.86</td>
<td>97.22</td>
<td>108.65</td>
<td>119.61</td>
<td>114.15</td>
<td>50.28</td>
</tr>
</tbody>
</table>
Simulación Abril de 2002 con Restricciones. Probabilidades de Fallo de demandas y de Estado de volumen de embalse total

RESTRICCIÓN DE LAS DEMANDAS AGRÍCOLAS EN UN 20%

Probabilidades de Fallo en Demanda.
Demanda: Riegos Canal J-T

<table>
<thead>
<tr>
<th>Meses</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficit (75 - 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficit (50 - 75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficit (25 - 50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficit (2 - 25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probabilidades de Fallo en Demanda.
Demanda: Ribera Alta

<table>
<thead>
<tr>
<th>Meses</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficit (75 - 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficit (50 - 75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficit (25 - 50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficit (2 - 25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probabilidades de Estado en Embalse.
Volume total en hm³

<table>
<thead>
<tr>
<th>Meses</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 195.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>195.38 - 390.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>390.76 - 586.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>586.15 - 781.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>781.53 - 976.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>976.91 - 1172.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1172.29 - 1367.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1367.67 - 1563.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1563.06 - 1758.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1758.44 - 1953.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 139. Probabilidades de estado de embalse y de fallo en el suministro a las demandas en la campaña 2002. Previsión realizada el 1 de abril de 2002 considerando una reducción en el suministro agrícola de un 20%.
9 ANÁLISIS PRÁCTICO DE POSIBLES ESTRATEGIAS DE RESPUESTA
En secciones anteriores se han analizado los recursos disponibles y se ha construido un modelo global de gestión de recursos superficiales y subterráneos. En paralelo a dicho análisis se han desarrollado algunos casos prácticos de uso conjunto en las cuencas del Júcar y Turia que permitan una mejor satisfacción de las demandas.

Como se ha podido comprobar en anteriores capítulos, el acuífero en mejor situación de cara a una mayor explotación como la que se propone en este estudio es el de la Plana de Valencia Norte y Sur. Los importantes retornos producidos por las extensas superficies cultivadas por métodos tradicionales unidos a la infiltración de lluvia suman un total de entradas medias de 281 hm3/año, siendo los bombeos de 130 hm3/año lo cual permite un margen de explotación que lo hace muy adecuado para el uso conjunto.

La utilización del acuífero, conjuntamente con el sistema superficial de presas y conducciones existentes, puede proporcionar una capacidad muy importante de regulación de recursos. Para conseguirlo se utilizarían más las aguas subterráneas de la Plana Sur en períodos secos (bombeando 71 hm3), permitiendo hacer menos uso de los embalses del Júcar (Alarcón-Contreras-Tous).

Durante los períodos con mayor disponibilidad de aguas superficiales se disminuirían los bombeos (pasando a ser de 29 hm3), con lo cual el acuífero aumentaría su almacenamiento que sería máximo al final del período húmedo. La diferencia de volúmenes de agua subterránea almacenada en el acuífero entre sus periodos más altos y los más bajos servirá para regular la variabilidad de las aportaciones, realizando una función análoga a la de los embalses superficiales.

De este modo se aumentan las garantías de los regadíos superficiales y se mejoran las disponibilidades reales de agua en el sistema Júcar. Ejemplos de ésto se desarrollan en este capítulo donde se presentan algunas propuestas como la del Abastecimiento a las poblaciones de la Ribera, la electrificación de los pozos de sequía de la Acequia Real o los regadíos del río Magro en los que el uso conjunto permite la sostenibilidad de unos regadíos en una situación complicada por la sequía de los últimos años.

En el caso del río Turia, el análisis de uso conjunto en las dos zonas regables más importantes como son las del Camp del Turia y la acequia de Moncada, permite un aumento considerable de las garantías de ambas comunidades de regantes mediante la explotación, en este caso, del acuífero de la Plana Norte.
La modelación del acuífero de la Plana de Valencia, que se ha desarrollado en el anexo F1 y se ha comentado en capítulos precedentes, constituye una importante herramienta para analizar la repercusión que tendrían estos aumentos de extracciones en los drenajes naturales al Júcar y a la Albufera como ha quedado reflejado en el anexo F5.
9.1 ESTUDIO DE LA ELECTRIFICACIÓN DE LOS POZOS DE SEQUÍA EN EL ÁMBITO DE LA ZONA REGABLE DE LA ACEQUIA REAL DEL JÚCAR

Este trabajo aborda el estudio de posibles actuaciones inmediatas en las zonas regables de los regadíos tradicionales del Júcar en las que más se acusan las situaciones de sequía prolongada. Dicho trabajo se encuentra en el anejo D2 del que a continuación se da un pequeño resumen.

Por su tamaño, características, y situación actual, se ha considerado suficiente limitar el citado estudio de actuaciones a la zona regable de la Acequia Real del Júcar en la que se da la circunstancia de que, como consecuencia del episodio de sequía de 1995, se ejecutó por las distintas administraciones públicas implicadas (Confederación Hidrográfica del Júcar y Consejería de Agricultura Pesca y Alimentación), y por algunas Juntas Locales de La Acequia Real, un importante número de sondeos (pozos de sequía) que en la actualidad se encuentran dotados de los oportunos equipos de bombeo, haciendo posible, por tanto, la utilización conjunta de los recursos superficiales con los subterráneos de los dos niveles acuíferos potencialmente explotables en la zona (cuaternario y mioceno). No obstante, lo anterior resulta que en la situación actual, y dada la inexistencia de acometidas a las redes eléctricas en la mayoría de dichos pozos, solo es posible su explotación mediante la utilización de grupos a gas-oil con la presumible merma de eficacia económica y logística asociada a dicha realidad.

Así, y de acuerdo con todas las consideraciones anteriores, el objeto del estudio realizado es el análisis de los costes de “electrificación” de los pozos de sequía todavía no “electrificados” de la zona regable de la Acequia Real del Júcar, así como de los costes de explotación en función de posibles reglas de operación que tengan viabilidad en el marco de las condiciones de contorno del sistema. El análisis se completa con su comparación con los costes asociados a la utilización de equipos a gas-oil.

Si bien el estudio se ha centrado en la zona regable de la ARJ, sus planteamientos pueden, y deben, ser extrapolados a la totalidad de los regadíos tradicionales. Los resultados de estos análisis, aparte de su posible consideración como variables estratégicas en el marco del estudio de alternativas de utilización conjunta en el ámbito general de la cuenca del Júcar, servirán de base para decidir y definir, con carácter más
inmediato, las potenciales actuaciones encaminadas a la electrificación de los pozos de sequía para su utilización, si es posible y necesario, en las próximas campaña de riegos.
En forma esquemática, el contenido y conclusiones del estudio pueden resumirse de la manera siguiente:

1.- La zona regable de la Acequia Real del Júcar, prescindiendo de la superficie del arrozal, se compone de 16.818 Has de cítricos, frutales y hortalizas. En la zona se encuentran en estado operativo un total de 51 pozos desde los que se domina un 66 % (11.103 Has) de la superficie de cítricos, frutal y huerta, quedando un 34 % (5.715 Has) de dicha superficie que sólo puede ser suministrada con recursos superficiales.

2.- La capacidad total de bombeo de los 51 pozos existentes, de acuerdo con las características de los equipos de bombeo instalados en todos ellos, es de 5,85 \(m^3/s \) lo cual supone la posibilidad potencial de abastecer las demandas de la superficie dominada por ellos en un porcentaje significativo (78 % en los meses de Octubre a Marzo en los que hay menores demandas).

![Figura 140. Pozos de sequía en el ámbito de la acequia Real del Júcar](image)

En la Figura 140 se distingue entre los sondeos realizados por la Confederación Hidrográfica del Júcar (en verde), los la Conselleria de Agricultura (en rojo) y los promovidos por particulares (azul). Los que tienen un circulo alrededor quiere decir que están electrificados a fecha de Diciembre 2002. En la Tabla 56 se pueden ver las características de estos pozos.
<table>
<thead>
<tr>
<th>SONDEO</th>
<th>Termino Municipal</th>
<th>Potencia Instalada (CV)</th>
<th>Caudal extracción (l/s)</th>
<th>Tipo</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLI VELL</td>
<td>BENIFAIO</td>
<td>50</td>
<td>50</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>MONTCARRETA</td>
<td>BENIFAIO</td>
<td>90</td>
<td>80</td>
<td>CHIJ</td>
<td></td>
</tr>
<tr>
<td>SANZ</td>
<td>BENIFAIO</td>
<td>70</td>
<td>75</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>QUINQUILLER</td>
<td>SOLLANA</td>
<td>100</td>
<td>100</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>ALGARINS</td>
<td>SOLLANA</td>
<td>125</td>
<td>150</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>ALGUDOR</td>
<td>SILLA</td>
<td>109</td>
<td>60</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>BRAS HORTS</td>
<td>ALCACER</td>
<td>82</td>
<td>60</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>PARDINES</td>
<td>ALGEMESI</td>
<td>60</td>
<td>120</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>LUENGO</td>
<td>ALGINET</td>
<td>70</td>
<td>100</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>FESA ROMANI II</td>
<td>PICASSENT</td>
<td>40</td>
<td>20</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>FESA ROMANI III</td>
<td>PICASSENT</td>
<td>35</td>
<td>30</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>PALETILLA</td>
<td>ALBALAT</td>
<td>125</td>
<td>150</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>MOLI PASCUAL</td>
<td>ALBALAT</td>
<td>152</td>
<td>130</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>MONTORTAL APEED.</td>
<td>ALCUDIA</td>
<td>130</td>
<td>150</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>BRUGADA</td>
<td>ALGEMESI</td>
<td>43</td>
<td>80</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>MAS ROIG</td>
<td>GUADASUAR</td>
<td>130</td>
<td>150</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>REC NOU</td>
<td>GUADASUAR</td>
<td>130</td>
<td>150</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>TORO</td>
<td>BENIMUSLEM</td>
<td>125</td>
<td>180</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>MULATA</td>
<td>BENIMUSLEN</td>
<td>80</td>
<td>190</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>PARA PIQUER</td>
<td>ALGINET</td>
<td>100</td>
<td>100</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>CAM. CONVENT</td>
<td>SOLLANA</td>
<td>125</td>
<td>150</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>FESA BENIPARRELL</td>
<td>ALCACER</td>
<td>49</td>
<td>40</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>PONT RENDERO</td>
<td>ALCACER</td>
<td>63</td>
<td>47</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>MARTI</td>
<td>BENIFAIO</td>
<td>40</td>
<td>30</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>MUSA</td>
<td>BENIFAIO</td>
<td>40</td>
<td>30</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>JURADO RIEGO</td>
<td>ALGEMESI</td>
<td>125</td>
<td>150</td>
<td>CHJ</td>
<td></td>
</tr>
<tr>
<td>FOIA</td>
<td>ALGEMESI</td>
<td>106</td>
<td>115</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>ACEQUIA ORI</td>
<td>ALZIRA</td>
<td>54</td>
<td>90</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>MAS ROIG</td>
<td>ALZIRA</td>
<td>50</td>
<td>110</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>DANTELL</td>
<td>ALBERIC</td>
<td>68</td>
<td>125</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>CORRALET</td>
<td>SOLLANA</td>
<td>40</td>
<td>50</td>
<td>CAPA</td>
<td></td>
</tr>
<tr>
<td>FENTINA</td>
<td>GUADASUAR</td>
<td>130</td>
<td>150</td>
<td>CHJ</td>
<td></td>
</tr>
</tbody>
</table>
3.- De los 51 pozos existentes la mayor parte, 41 a fecha de Diciembre 2002, no disponen de acometida a la red eléctrica y, por tanto, es necesaria la utilización de grupos electrógenos a gas-oil para su funcionamiento. Por ello se ha estudiado la “electrificación” de los citados 41 pozos resultando una estimación de inversión total de 2.868.745,60 € (477.319.104 ptas), lo que supone una inversión media de 61.037,15 € (10.155.726 ptas) por cada pozo. Para un periodo de amortización de 15 años, y al 6% de interés, resulta una cuota global de amortización de 295.373,97 €/año (49.146.095 ptas/ año) y una cuota media por pozo de 6.284,55 €/año (1.045.661 ptas/año).
4.- Se han considerado 3 alternativas de explotación de los pozos en un año medio que se designaron como MAX, INT y MIN, diferenciando en el periodo de funcionamiento considerado de acuerdo con las siguientes descripciones:

MAX.- Pozos funcionando todo el año

INT.- Pozos funcionando de Octubre a Abril

MIN.- Pozos funcionando de Octubre a Marzo

![Gráfico de comparación de volúmenes extraídos](image)

Figura 141. Comparación de los volúmenes extraídos en la alternativa MAX comparados con la demanda dominada por cada pozo y el caudal derivado por el azud de Antella

El volumen total anual extraído del acuífero en cada alternativa, y el porcentaje de satisfacción de la demanda de la superficie dominada por los pozos para el periodo de funcionamiento de los pozos previsto para esa alternativa es la que se resume en la Tabla 57.

<table>
<thead>
<tr>
<th>Alternativas</th>
<th>Volumen extraído anual</th>
<th>Demanda dominada</th>
<th>% de satisfacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa MAX</td>
<td>71.032.826 m³</td>
<td>149.852.214 m³</td>
<td>47,4 %</td>
</tr>
<tr>
<td>Alternativa INT</td>
<td>29.154.712 m³</td>
<td>38.000.843 m³</td>
<td>76,72 %</td>
</tr>
<tr>
<td>Alternativa MIN</td>
<td>22.792.021 m³</td>
<td>29.227.504 m³</td>
<td>77,98 %</td>
</tr>
</tbody>
</table>

Tabla 57. Volúmenes extraídos por los pozos de sequía en las distintas alternativas consideradas.
5.- De acuerdo con las cifras anteriores, y sin entrar en los estudios adicionales del comportamiento del acuífero y del sistema total de recursos (que ya han sido comentados y que pueden consultarse en el anexo F5), frente a las estrategias de explotación de los pozos de sequía de las distintas alternativas consideradas, todas ellas pueden catalogarse de interesantes desde un punto de vista de su planteamiento coyuntural en episodios puntuales de sequía, tanto desde el punto de vista de porcentajes de satisfacción de demandas como del impacto sobre el acuífero y el sistema de recursos dado el carácter “moderado” del volumen total bombeado.

En este último sentido, y para las alternativas que suponen la utilización de los pozos en los meses de menores demandas, puede plantearse, incluso, su valor estratégico como reglas de explotación en el marco de un sistema de utilización conjunta de recursos superficiales y subterráneos de forma continuada.

6.- En cada una de las alternativas se han considerado dos hipótesis:

HIPÓTESIS 1.- Funcionamiento con todos los pozos “electrificados”

HIPÓTESIS 2.- Funcionamiento con equipos electrógenos a gas-oil de los pozos que en la actualidad no tienen acometida a la red eléctrica. Los pozos que ya están electrificados se ha considerado evidentemente que funcionan como tales.

Para cada hipótesis, y para cada alternativa, se han calculado los costes totales por m3 extraído incluyendo los costes de explotación, y los de amortización. Los resultados obtenidos son los que se resumen en la Tabla 58, para el conjunto de todos los pozos.

<table>
<thead>
<tr>
<th></th>
<th>HIPÓTESIS 1</th>
<th>HIPÓTESIS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>2,1 cént. €/ m3 (3,49 ptas/m3)</td>
<td>4,8 cént. €/ m3 (7,95 ptas/m3)</td>
</tr>
<tr>
<td>INT</td>
<td>2,9 cént. €/ m3 (4,88 ptas/m3)</td>
<td>6,8 cént. €/ m3 (11,4 ptas/m3)</td>
</tr>
<tr>
<td>MIN</td>
<td>2,9 cént. €/ m3 (4,77 ptas/m3)</td>
<td>7,8 cént. €/ m3 (13,04 ptas/m3)</td>
</tr>
</tbody>
</table>

Tabla 58. Coste por m3 de cada alternativa de explotación de los pozos de sequía

7.- De acuerdo con los resultados anteriores, el coste final por m3 extraído asociado a la “electrificación” de los pozos, en cualquiera de las alternativas de explotación consideradas, resulta muy competitivo y, en todo caso, más ventajoso que el correspondiente a la utilización de equipos a gas-oil.
Por otra parte, dada la competitividad del coste por m³ obtenido en la hipótesis de “electrificación” y teniendo en cuenta que en dicho coste está incorporada la repercusión de la amortización de las inversiones asociadas (en un plazo de tan solo 15 años y a un interés realista del 6% anual), puede afirmarse que las actuaciones encaminadas a dotar de acometidas eléctricas a los pozos que en la actualidad no disponen de ellas tienen un alto grado de viabilidad económica.

En fecha de Marzo del 2002, se planteó la posibilidad de explotar estos pozos en la temporada de riegos de primavera y verano de 2002, en el marco de la gestión global de recursos de la cuenca del Júcar y, para ello, se estimó conveniente llevar a cabo una breve campaña de explotación sobre la base del funcionamiento real de 5 pozos, de distintas características, que sirvieran de muestra para la confirmación o modificación de las hipótesis consideradas en los anteriores estudios.

Figura 142. Pozos electrificados de Sanchis SOS y Moya puestos en funcionamiento en la campaña del 2002

En el anejo D3 se describen, por una parte las condiciones de dicha campaña de explotación y su seguimiento y, por otra, se analizan los resultados de la misma para su consideración en el estudio de costes de los 15 pozos en vías de electrificación.

Del análisis de costes se deducen unos costes fijos unitarios de los pozos analizados cuyo valor medio es muy próximo al supuesto en los estudios previos, en concreto se pasa de 0,57 €/Kw/mes (95,10 ptas/Kw/mes) a 0,63 €/Kw/mes (104 ptas/Kw/mes).

Del análisis de costes de deducen, así mismo, unos costes variables unitarios superiores a los supuestos, con una diferencia de mayor importancia relativa que en el caso de los costes fijos. En los estudios anteriores era de 8 céntimos de € /kwh equiv (13 ptas/kwh equiv) y la real, dependiendo de la hipótesis de explotación es de, 8,8 a 9,1 céntimos de € /kwh equiv (14,66 a 15,20 pts/kwh equiv).
Sobre la base de las conclusiones obtenidas se procedió a revisar los cálculos de costes fijos y variables de explotación de los pozos próximamente electrificados de la Acequia Real del Júcar, cuya última actualización se produjo en Marzo de 2002, tal como se indica en los antecedentes del anejo D3.

Así, las modificaciones que se propusieron a los cálculos efectuados en dicha actualización fue la de aplicar un coste variable unitario de explotación de 16 pts/kwh equivalente en lugar de las 13 pts/kwh aplicadas en estudios anteriores. Debe puntualizarse que se toma como coste una cifra algo superior a las 15,20 pts/kwh, obtenida como media de los pozos controlados durante la campaña en la hipótesis de mayores costes, con el objeto de quedar razonablemente del lado de la seguridad en el cálculo de los costes variables que, como es natural, son los de mayor repercusión en el coste por m³ extraído a partir de hipótesis de explotación relativamente moderadas.

En cuanto a los costes fijos de explotación no se propone modificación alguna pues, aunque en los estudios previos se suponía un coste de 95,10 pts/kw y el valor medio obtenido en los pozos controlados durante la campaña es de 104 pts/kw, también se suponía un coste de mantenimiento de 52.200 pts/año que en la realidad puede ser algo menor.

Así, con estas modificaciones propuestas se han obtenido los nuevos resultados, que se adjuntan en el anejo D3, en las mismas hipótesis de explotación consideradas en la última actualización (explotación todo el año o explotación durante el año 2002 a partir de la fecha prevista de puesta en funcionamiento de cada pozo). Debe tenerse en cuenta, además, que para la confección de estas tablas se han actualizado, también, las superficies dominadas por cada pozo que, en algún caso, no se ajustaban enteramente a la realidad.

Los costes obtenidos para la explotación durante todo el año pasan de los 2.1 céntimos de €/m³ (3,49 ptas/m³) a los 2.2 céntimos de €/m³ (3,66 ptas/m³).

En cuanto a las afecciones sobre el acuífero de dichas extracciones decir que han sido simuladas con el modelo MODFLOW de la Plana Sur de Valencia (Vease el anejo F5) y se ha llegado a la conclusión de que puede plantearse una extracción anual de recursos subterráneos en casos de sequía de 71 hm³/año (Hipótesis MAX). Si bien, para un...
planteamiento de uso continuo la cifra hay que reducirla sensiblemente, estimándose que las afecciones no presentan problemas para bombeos continuos de 29 hm3/año (Hipótesis INT).

En el capítulo 8 se habló de la mejora de garantías que se consiguen con la explotación de los pozos en las acequia de la Ribera Alta y Baja. En las siguientes figuras se observa la reducción en los déficits acumulados en la demanda de la acequia Real y la acequia de Sueca a medida que aumenta la capacidad de bombeo utilizada en las situaciones de sequía para el escenario de demanda VI(situación a medio plazo).

![Gráfica 1](Figura 143. Bombeo medio producido frente a los déficits acumulados a 1, 2 y 10 años en la acequia Real del Júcar, para el escenario de demanda VI (situación previsible del sistema a medio plazo)

El aumento de las extracciones de agua subterránea en la zona de la Acequia Real del Júcar además de aumentar las garantías en la propia Acequia Real implica una ligera mejora en los déficits acumulados de la acequia de Sueca, la cual es representativa de todos los riegos de la Ribera Baja del Júcar.

Las mejoras de garantías con la explotación de los pozos de sequía y se han comentado con mayor detalle en el capítulo 8 del presente documento.
9.2 ESTUDIO SOBRE REGADÍOS DEL RÍO MAGRO

El objeto de este estudio ha sido el análisis pormenorizado de las superficies regadas en el entorno del río Magro, aguas abajo del embalse de Forata, sus demandas y recursos, como caso singular, dentro del sistema Júcar, en el que convendría entrar en detalle para analizar la sostenibilidad del sistema y propuestas de actuaciones.

El sistema del río Magro no se incluye en el modelo global ya que en la práctica su gestión se realiza de forma independiente a la del resto del sistema Júcar.

El estudio, que se encuentra íntegramente en el anexo D5, contiene un análisis de la parte del sistema del río Magro comprendida desde Forata hasta la zona regable del Canal Júcar-Turia. La zona estudiada contiene los términos municipales de Alfarp, Catadau, Llombay, Montroy, Real de Montroy, Monserrat, Turis, Alborache y Macastre.

La citada superficie, dedicada esencialmente al cultivo de cítricos, se compone de la zona de regadío con agua superficial que se suministra desde el propio embalse de Forata, mediante derivaciones en el cauce del río, y de las zonas de regadío con aguas subterráneas que se extienden en el entorno de la anterior.

![Figura 144. Embalse de Forata en el río Magro](image)

Desde un punto de vista de análisis de recursos y demandas, que como se verá forma parte del objeto del presente estudio, el sistema se compone, en lo que a demandas se refiere, de las superficies de riego citadas en el párrafo anterior así como de las zonas urbanas e industriales cuyas demandas se suministran con recursos del mismo origen que las de riego, es decir, los recursos del Magro regulados en Forata y parte de los
recursos subterráneos de los acuíferos del Ave y de la Contienda (en el Caroch Norte) y del acuífero de Buñol-Cheste.

El embalse de Forata tiene una capacidad de 37.3 hm3. Desde el año 1968, en el que entró en explotación, hasta el año 1.996, la superficie de regadío con aguas superficiales reguladas en el embalse era de unas 4.276 Has de distintas comunidades de regantes agrupadas en el llamado “Sindicato Central de Forata”. A partir del año 1.996 una parte de esta superficie dejó de pertenecer a este sindicato para integrarse en la zona regable del Canal Júcar-Turia tras las oportunas tramitaciones de las correspondientes concesiones. En concreto, las superficies “trasvasadas” al Canal correspondían a tres Comunidades (Aledua, Masalet y Acequia Común de Carlet) con el siguiente detalle:

- De la Comunidad de Aledua 566 Has
- De la Comunidad de Masalet 2.021 Has
- De la Acequia Común de Carlet 451 Has

TOTAL 3.038 Has

Así, desde el citado año 1.996 la superficie integrada en el Sindicato Central de Forata está reducida a 1.238 Has que se suministran desde el embalse.

Con estos antecedentes podría deducirse, sin otras consideraciones adicionales, que como consecuencia inmediata de la disminución de la superficie regable dependiente de Forata debería haberse producido un incremento notable de las garantías de riego. La realidad, sin embargo, ha sido la contraria en el sentido de que, precisamente en los últimos años, ha habido problemas en relación con la satisfacción de las demandas hasta el punto de que en las temporadas de riego de los años 2000 y 2001 ha habido que suministrar, cada año, un volumen de unos 500.000 m3 desde el Canal Júcar-Turia a la zona regable de Forata para salvar la campaña de riegos (El agua así suministrada procedía de los pozos de la propia Comunidad General de Usuarios del Canal Júcar-Turia).

A estos hechos, relativos a las demandas de los recursos superficiales regulados en Forata, hay que añadir la situación actual de las demandas agrícolas, urbanas e industriales, que se suministran con recursos subterráneos de los acuíferos citados en un párrafo anterior y que, a tenor de las informaciones disponibles, parecen tener, así mismo, problemas de garantías de satisfacción de demandas incluso en años de pluviometría “normal”.

Documento de Síntesis
En relación con el río Magro el Plan Hidrológico de Cuenca (PHJ, 1998) en su artículo 32 dice los siguientes:

“...Se asignan la totalidad de los recursos superficiales del río Magro a los usos actuales y futuros que se realicen en dicho río. La zona regable a atender con recursos regulados por el embalse de Forata queda toda ella por encima del Canal Júcar-Turía, considerando que la que se encuentra por debajo (Masalet, Aledua, Carlet) se atiende con caudales procedentes del mencionado Canal Júcar-Turía, de acuerdo con las condiciones existentes. Los recursos liberados podrán destinarse a los riegos en la zona alta por encima del Canal, que se consideran como riegos del Magro”.

1) Delimitación y actualización de las demandas

Una de las labores más importantes de este trabajo era el conocimiento de la manera más real posible de las superficies regadas aguas abajo de Forata pues, una vez obtenidas éstas, se podría analizar la sostenibilidad del sistema y la situación en la que se encuentra.

La casi totalidad de los aprovechamientos superficiales se corresponden con usos agrarios. De ellos se han delimitado las superficies cultivadas, en su mayoría cítricos, contrastando diversas fuentes de datos que van desde encuestas IT de la Conselleria de Agricultura, datos de teledetección de la CHJ, datos de catastro, de cartografía 1:10.000 del Instituto Cartográfico Valenciano, hasta los datos provenientes de la Comisaría de Aguas y de los expedientes de pozos.

En el anejo D5 se puede encontrar cartografía a escala 1:20.000 y 1:50.000 de las superficies de riego, tanto superficial como de aguas subterráneas. La elaboración de esta cartografía ha sido fruto de un trabajo de investigación y de la consulta, una tras otra, de las comunidades de regantes implicadas.

En resumen, la superficie total de regadío con aguas superficiales (Sindicato Central de Forata) asciende a 1.238 Has y la de regadío con aguas subterráneas es de casi 7.000 Has.

Una vez delimitadas las superficies de riego y conocidos los cultivos ha sido posible cifrar la demanda superficial del sistema en unos 10 hm³/año.

Se han analizado las demandas urbanas e industriales, que han resultado ser de unos 3 hm³/año suministradas desde pozos.
Por último, mediante los expedientes de los pozos y campaña de campo se ha logrado delimitar la demanda subterránea, incluida la demanda urbana e industrial, que está en torno a los 31 hm3/año.

Como resumen se pueden estimar unas demandas totales en la cuenca de unos 44 hm3/año.
Figura 145. Superficies regadas con aguas superficiales y subterráneas en el río Magro aguas abajo de Forata
2) Análisis de la sostenibilidad del sistema

El análisis de la sostenibilidad del sistema se ha realizado tanto desde el punto de vista de los recursos superficiales como del de los subterráneos.

a) Recursos superficiales

En este punto se ha hecho especial hincapié en conocer las superficies regadas con aguas superficiales de Forata, cuya demanda se ha cifrado en unos 10 hm3/año.

También se han analizado las aportaciones medias que son de 24,3 hm3/año desde la construcción de Forata en 1968, que da una relación de 2,5:1 entre recursos y demandas. No obstante, se han detectado disminuciones de las entradas a Forata desde hace unos 10 años que podrían ser debidas a un aumento de los bombeos en la cuenca alta y que aconsejan su control para no poner en peligro el futuro de los riegos del Sindicato Central de Forata.

La irregularidad de los recursos hídricos propia de las cuencas mediterráneas provoca largos periodos de sequía, como el que afecta actualmente a la cuenca del Magro, y esto provoca déficits hídricos importantes aunque la relación entre recursos y demandas no sea ajustada.

Tras un análisis de las sostenibilidad del sistema resulta que una demanda de 9 hm3/año puede cubrirse sin que se produzca ningún déficit en todo el período 1934-2000. La demanda que puede cubrirse en todo el período cumpliendo los criterios UTAH es de 11 hm3/año. El período crítico que limita el déficit en años consecutivos es la sequía de los años 1999-2000. Como conclusión global de este análisis, puede decirse que, como la demanda del regadío superficial se cifra en unos 10 hm3/año, según se ha visto en el apartado anterior, y pueden satisfacerse con buenas garantías 11 hm3/año, existen recursos suficientes para satisfacer la demanda, aunque de forma un poco ajustada, y que, por tanto, los problemas que se sufren casi permanentemente en estos regadíos son de naturaleza distinta a la de desequilibrios entre recursos y demandas, a excepción naturalmente de situaciones coyunturales de sequía.

La problemática real de los aprovechamientos se reduce, finalmente, a zonas locales en la cola del sistema y en épocas de sequía. La magnitud del problema está tan acotada
que es posible pensar en posibles medidas, de elevada viabilidad, con las que se mejoren las garantías de toda la cuenca.

b) Recursos subterráneos

Una vez conocidas las demandas subterráneas del sistema tras realizar un inventario de los expedientes de los pozos, se ha establecido un balance local de las unidades hidrogeológicas de la zona de estudio. Estos balances del acuífero de Buñol-Cheste y de los acuíferos del Ave y de la Contienda (Caroch-Norte) reflejan un equilibrio ajustado entre entradas y salidas a los mismos.

Únicamente el acuífero más indicado para aumentar su explotación es el de la Plana Sur de Valencia pues es el que tiene un balance menos ajustado que el resto entre entradas y salidas, de hecho hasta la fecha no está siendo explotado en el marco del los regadíos del río Magro.

Finalmente, se subraya el estricto estado de equilibrio actual entre recursos y demandas y, con carácter general, la conveniencia de constituir una gran Comunidad de Regantes de toda la zona por las ventajas administrativas y funcionales que se podrían derivar de dicha constitución.

3) Posibles actuaciones propuestas

Por lo que se refiere al aprovechamiento de recursos superficiales se han concretado medidas tendentes a resolver el problema local existente en la cola del sistema (zona del Marquesado) en el sentido de: a) incrementar los recursos disponibles y b) incrementar la eficacia en la gestión de dichos recursos.

Para incrementar los recursos disponibles se han apuntado medidas tales como:

- Construcción de pozos para colaborar en el abastecimiento del regadío superficial (uso conjunto)
- Crear elementos de regulación de recursos superficiales no regulados (recursos del río Buñol)
- Importación de recursos desde el Canal Júcar-Turia
- Reutilización de aguas residuales depuradas
Para lograr más eficacia en la gestión de los recursos disponibles se han propuesto medidas tales como:

- Eliminación de tomas no autorizadas y equipamiento de control de las autorizadas
- Modernización del regadío
- Incremento de la eficiencia de transporte de los recursos desde Forata.

Tras un análisis previo de estas posibles actuaciones, se ha desarrollado un análisis económico de dos de ellas que, a priori, resultaban más interesantes. Concretamente el análisis se ha centrado en la construcción de pozos y en la creación de una balsa de regulación de los recursos invernales del río Buñol.

De estas dos alternativas, la más competitiva ha resultado ser la construcción de unos pozos de sequía en los términos municipales de Alfarp, Catadau y Llombay que complementen las aguas procedentes de Forata en épocas de sequía. La actuación se traduce en la construcción de 4 pozos de 3.500 l/min cada uno, con sus correspondientes balsas de regulación diaria de 1.800 m³ de capacidad y su conexión a las acequias de riego del Marquesado. Estas actuaciones tendrían un coste total de 1.626.257 € y unos costes de explotación, asociados a la extracción de unos 600.000 m³/año, que está en torno a los 2 céntimos de €/m³.
Figura 146. Ubicación de los pozos propuestos para el uso conjunto

La construcción de estos pozos, y el uso conjunto que se propone, no es incompatible con otras de las medidas propuestas en este mismo estudio, como pueden ser la modernización de los regadíos, la reutilización de aguas residuales, control de tomas no autorizadas etc., que junto a los nuevos pozos permitirán un uso más racional del recurso hídrico y la sostenibilidad de los regadíos del Magro.
9.3 ESTUDIO DEL ABASTECIMIENTO DE AGUA POTABLE A LA RIBERA

También en el ámbito del sistema Júcar, y como caso singular, que afecta directamente a un importante número de habitantes e indirectamente a una zona húmeda de gran importancia medioambiental, ha surgido la necesidad de analizar la problemática que se está planteando en algunos municipios de las comarcas agrícolas de la Comunidad Valenciana, cuya fuente de suministro es de origen subterráneo, con la continua degradación de la calidad de las aguas subterráneas en la mayoría de las captaciones debido a las prácticas de fertilización asociadas a las labores agrícolas.

En este estudio, que se encuentra íntegramente en el anejo D1, dentro del grupo de análisis de estrategias de utilización conjunta, el planteamiento del uso conjunto no se hace únicamente en base a una mejora de las garantías de dichos abastecimientos sino como una medida que asegure la calidad del agua destinada al consumo humano en el conjunto de los municipios de Alzira, Algemesí, Albalat de la Ribera, Carcaixent, Corbera, Cullera, Favara, Fontanenay, Llaurí, Riola y Sueca.

Como antecedentes, cabe citar que la Consellería de Obras Públicas de la Generalidad Valenciana redactó, en 1998, un "Proyecto básico del Abastecimiento de Agua potable a las comarcas de la Ribera" (COPUT, 1998b), diseñando una solución que se basaba esencialmente en mezclar el agua subterránea de los actuales pozos de abastecimiento de estos municipios, que extraen el agua del acuífero de la Planasur (de elevados nitratos), con aguas procedentes de pozos situados en el acuífero del Caroch Norte (con poca concentración de nitratos), de manera que la mezcla de agua de distintas calidades proporcione un contenido en nitratos resultante que la haga apta para el consumo humano.

Para extraer los recursos subterráneos del Caroch Norte, el Proyecto básico citado propone la utilización de dos pozos existentes en las inmediaciones del nuevo pueblo de Tous, llamados “pozos de la Garrofera”, que con la explotación adicional de otros nuevos pozos, a construir, proporcionarán una capacidad total de extracción suficiente para el fin perseguido por el Proyecto.

No obstante lo anterior, y aunque solo sea con carácter de conjetura, la ubicación de los “pozos de la Garrofera” y de los nuevos a construir, así como la explotación prevista para ellos en el Proyecto, puede llevar consigo un problema medioambiental que se...
concreta en la posible afección de los bombeos a “Els Ullals” del Río Verde. En efecto, “Els Ullals” del Río Verde, también llamados manantiales de Massalavés, a pesar de ubicarse geográfica y morfológicamente dentro de la Plana de Valencia, son el principal punto de descarga del acuífero del Caroch Norte y dan lugar a una zona húmeda de interés medioambiental que, obviamente, podría quedar afectada por las captaciones finalmente previstas en los Proyectos de la Consellería de Obras Públicas (COPUT 1998b).

Conscientes de este posible problema, la solución propuesta por la Consellería (COPUT, 1998b) para evitar la afección descrita, en caso de producirse, es la reposición de los caudales afectados en la descarga de Massalavés con agua subterránea procedente de pozos próximos a “Els Ullals” que explotan el acuífero de la Plana Sur en la zona regable de la Acequia Real del Júcar. Esta solución, que resolvería la posible afección en términos cuantitativos, puede adolecer de poca eficacia en términos cualitativos, dada la diferente calidad de las aguas del acuífero de la Plana Sur respecto de las procedentes del acuífero del Caroch Norte, que en la actualidad desaguan por el manantial de Massalavés, con la consecuente afección potencial sobre el ecosistema de la zona húmeda. Cabe recordar en este punto que los manantiales de Massalavés son un LIC además de pertenecer al catalgo de zonas húmedas.

![Manantiales de Massalaves, río Verde](image.png)

Figura 147. Manantiales de Massalaves, río Verde

Por otra parte, y en otro orden de cosas, la solución proyectada puede tener otro punto débil en el hecho de que su diseño se basa en unos contenidos en nitratos (tanto de los pozos actuales de abastecimientos desde el acuífero de la Plana Sur, como de los “pozos
de la Garrofera” en el acuífero del Caroch Norte) que pueden evolucionar hacia mayores concentraciones futuras, comprometiendo la eficacia de las actuaciones emprendidas.

Por dicho motivo se ha considerado conveniente estudiar unas soluciones alternativas al suministro de recursos de bajo contenido en nitratos desde el Caroch que, siendo económicamente y técnicamente viables, obvien los posibles problemas de la solución proyectada aprovechando, al mismo tiempo, casi todos sus elementos. Estas soluciones son convenientemente desarrolladas en el anejo D1 donde se efectúa, además, una completa valoración económica.

En esencia, las soluciones alternativas estudiadas se basan en los mismos planteamientos de la solución proyectada, en el sentido de mezclar el agua de baja calidad de los abastecimientos actuales (agua subterránea del acuífero de la Plana Sur) con agua de mejor calidad, cambiando el origen de esta última (agua subterránea del Caroch Norte) por agua superficial procedente del embalse de Tous, con un contenido en nitratos de 6 ppm, que permite, por tanto, alcanzar el objetivo de obtener unas aguas de abastecimiento dentro de los parámetros de calidad exigibles, evitando o resolviendo, además, los posibles problemas de la solución proyectada.

En la solución alternativa planteada las captaciones para los abastecimientos actualmente existentes en el acuífero de la Plana Sur de Valencia podrían tener una doble función; por un lado seguirían abasteciendo aproximadamente a la mitad de la demanda urbana de la Ribera que serían 11 hm³/año, y por otra parte, suministrarían 11 hm³/año a las demandas de riego de zonas regables próximas que, en la actualidad, se suministran con aguas superficiales de Tous.

Dichos cambios no se han considerado en las simulaciones del modelo global por tratarse fundamentalmente de un cambio de uso y no de un incremento en el volumen de agua consumido.

En la siguiente figura se puede ver un esquema de las soluciones planteadas.
ESTUDIO DE UTILIZACIÓN CONJUNTA DE LOS RECURSOS HÍDRICOS SUPERFICIALES y SUBTERRÁNEOS DE LAS CUENCAS MEDIAS Y BAJAS DE LOS RÍOS JÚCAR Y TURIA

Figura 148. Esquemas de las soluciones planteadas
9.4 ESTUDIO DE UTILIZACIÓN CONJUNTA DE LOS RECURSOS HÍDRICOS SUPERFICIALES Y SUBTERRÁNEOS DE L’HORTA NORD Y CAMP DEL TURIA

En este estudio se propone un caso práctico de uso conjunto de los recursos hídricos superficiales y subterráneos entre dos de las principales unidades de demanda agraria del sistema de explotación Turia, Canal Camp del Turia y Real Acequia de Moncada.

En la actualidad los regadíos del Canal Camp del Turia se abastecen mediante el uso conjunto de recursos hídricos superficiales y subterráneos. Por el contrario, los regadíos de la Real Acequia de Moncada siguen regando con aguas superficiales y con el sistema de riego “a manta”, con la baja eficiencia propia de este tipo de aplicación y de unas infraestructuras que requieren actuaciones de modernización.

En este contexto, y de acuerdo con los objetivos del estudio, se analiza la situación actual de las correspondientes unidades hidrogeológicas, en cuanto que es absolutamente necesario conocer el estado de las mismas de cara a un posible uso conjunto de recursos superficiales y subterráneos. Las unidades afectadas son la 8.25: Plana de Valencia Norte, la 8.22: Llíria-Casinos y en menor medida la 8.20: Medio Palancia.

El acuífero Llíria-Casinos es uno de los más explotados de la cuenca del Turia, situación que contrasta con la del acuífero de la Plana Norte de Valencia, cuyos recursos podrían permitir una explotación mayor que la actual.

En cuanto a la prioridad en el suministro de las demandas agrarias, el Plan Hidrológico de cuenca del Júcar (CHJ, 97) en su sección cuarta artículo 31 dice lo siguiente:

“...Los recursos regulados en el sistema de embalses Benagéber-Loriguilla y los caudales fluyentes aguas abajo de este embalse se asignarán por el orden siguiente: primero al abastecimiento de Valencia en la cuantía de 1 m³/s, segundo a la atención de los riegos tradicionales (Pueblos Castillo, Moncada y de la Vega de Valencia) y tercero a la atención de los riegos de la zona regable del Camp del Turia....”

Así, y como después se verá, las posibles medidas propuestas respetan lo establecido en el Plan de Cuenca del Júcar, preservando e incluso incrementando en todo momento las garantías de los riegos de la Acequia de Moncada.
Estas medidas son compatibles, además, con las actuales obras de modernización de regadíos y reutilización de aguas residuales que se están llevando a cabo en la Real Acequia de Moncada y en el canal Camp del Turia. Todo ello permitirá aumentar las garantías de ambos regadíos y del abastecimiento de las poblaciones de Ribarroja, La Eliana, Benaguacil y el resto de municipios del Campo del Turia, al tiempo que permitirá la mejora del balance hídrico del acuífero de Llíria-Casinos, en consonancia con lo establecido por el Plan Hidrológico de cuenca del Júcar (CHJ, 1998) en su sección cuarta artículo 31:

“...Los volúmenes provenientes de medidas de ahorro en los regadíos de aguas abajo del sistema de Benagéber-Loriguilla y los que provengan de la futura regulación del Bajo Turia, se destinarán a la satisfacción de las necesidades de abastecimiento urbano de las poblaciones de Ribarroja, La Eliana, Benaguacil, y el resto del Camp del Turia. En el caso de que estos recursos no sean suficientes, dichas necesidades se atenderán a partir de los recursos asignados a la zona regable del Camp del Turia, mediante la correspondiente reasignación de recursos...”

De acuerdo con todo lo dicho, puede resumirse que la situación actual del sistema global, compuesto por las zonas regadas por la Real Acequia de Moncada y el Canal del Camp del Turia, es de bajas garantías en el suministro a las demandas de la acequia de Moncada y de intensa explotación del acuífero Llíria-Casinos en el caso del Camp del Turia.

Por otra parte, en lo relativo a las aguas subterráneas de la zona regada por la Acequia de Moncada se da una situación excedentaria en recursos, con unas importantes salidas al mar, que no son utilizadas.

Por ello, y tras el oportuno análisis, se plantea la posibilidad de establecer la explotación conjunta de los recursos superficiales y subterráneos de la zona regada por la acequia de Moncada que, unida a la reutilización de las aguas residuales depuradas del área metropolitana de Valencia, mejoraría sustancialmente las garantías actuales de dicha zona.

Este planteamiento de uso conjunto permitiría, por otra parte, una liberación de recursos superficiales en el embalse de Benageber que podrían mejorar los suministros a las poblaciones de Ribarroja, La Eliana, Benaguacil, etc., que actualmente se abastecen de aguas subterráneas del acuífero Llíria-Casinos disminuyendo, así la presión actual sobre el acuífero.
Sobre la base de estas consideraciones se han analizado tres alternativas de uso conjunto en la zona de la Acequia de Moncada cuyos aspectos fundamentales se expresan, brevemente, a continuación:

- Alternativa 1.- Utilización de 7 pozos de sequía existentes, construidos por la Consellería de Agricultura en 1994-95, para un bombeo anual de unos 5 hm³.

- Alternativa 2.- Utilización de los pozos de sequía existentes y construcción de nuevos pozos para un bombeo total anual de unos 10 hm³.

- Alternativa 3.- Utilización de los pozos de sequía existentes y construcción de nuevos pozos para un bombeo total anual de unos 20 hm³.

Figura 149. Ubicación de los pozos construidos por la Conselleria de Agricultura.
El análisis de los costes de inversión y explotación, asociados a estas alternativas, ha mostrado la viabilidad de todas ellas con costes de explotación, por ejemplo, que se sitúan entre 1 y 1,16 céntimos de Euro por metro cúbico extraído. No obstante, por razones de tipo funcional y de moderación en la explotación del acuífero de la Plana Norte de Valencia, se concluye, finalmente, que la alternativa más convincente es la segunda con una extracción de unos 10 hm3 anuales del citado acuífero.

Concretamente, la propuesta final de actuaciones para el uso conjunto de recursos superficiales y subterráneos en la zona regable de la Acequia de Moncada que en la actualidad se suministra exclusivamente de recursos superficiales del Turia regulados en el embalse de Benagéber, consiste en la construcción de 8 pozos de una capacidad de extracción de 125 l/s cada uno que, junto con la electrificación de 7 pozos de sequía existentes, permitan el bombeo de 10 hm3 del acuífero de la Plana Norte de Valencia para su utilización en el suministro de riegos de la zona.

La incorporación de estos recursos subterráneos, junto con la futura reutilización de aguas residuales depuradas prevista en el PRARV (COPUT, 1998), véase Tabla 59, de 10,42 hm3, mejorarán las garantías de los riegos de la Acequia de Moncada produciendo, adicionalmente, una liberación de recursos superficiales en el embalse de Benagéber que, por otra parte, podrán utilizarse para sustituir bombeos de abastecimientos urbanos en el acuífero Llíria-Casinos disminuyendo, así, su intensa explotación actual.

<table>
<thead>
<tr>
<th>Depuradora</th>
<th>Volumen (hm3/año)</th>
<th>Fase</th>
<th>Situación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camp del Turia</td>
<td>3,70</td>
<td>1ª Fase</td>
<td>Ya construida, y vierte a la después de la toma de AAPP a la acequia de Moncada.</td>
</tr>
<tr>
<td>L’Horta Nord</td>
<td>4,29</td>
<td>2ª Fase</td>
<td>Proyecto redactado</td>
</tr>
<tr>
<td>Paterna</td>
<td>2,43</td>
<td>2ª Fase</td>
<td>En construcción</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10,42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 59. Actuaciones previstas por el plan de reutilización de aguas residuales del Área Metropolitana de Valencia para el suministro desde la Acequia de Moncada.

Obviamente, el número de nuevos pozos a construir, así como sus características, hay que tomarlo como simplemente orientativo y susceptible de modificación en función de circunstancias que no han podido tenerse en cuenta en un estudio como el presente. Con esta puntualización resulta que el coste global de las actuaciones asociadas a la alternativa elegida sería de 1.775.459 € (295.411.521 Ptas) lo que incluiría la
electrificación de los pozos de sequía existentes y la construcción de los 8 nuevos, mientras que el coste de explotación del bombeo de 10 hm³ anuales sería de 108.277 €/año (18.015.777 ptas/año) lo que implica un coste unitario de 1,1 céntimo de €/m³ (1,80 ptas/m³).
10 RESUMEN Y CONCLUSIONES
Como resumen y conclusiones generales del trabajo realizado en el ámbito del “ESTUDIO DE UTILIZACIÓN CONJUNTA DE LOS RECURSOS SUPERFICIALES Y SUBTERRÁNEOS DE LAS CUENCAS MEDIA Y BAJA DE LOS RÍOS JÚCAR Y TURIA”, puede apuntarse lo siguiente:

10.1 RECURSOS

10.1.1 Recursos superficiales

Con carácter general, y como primer paso para la evaluación de los recursos superficiales de los ríos Júcar y Turia, se ha llevado a cabo una revisión y actualización de las series de aportaciones que se han utilizado con anterioridad. En este proceso de revisión y actualización se ha efectuado un contraste entre las series restituidas a régimen natural y las estimadas con el modelo de precipitación-escorrentía SIMPA (Sistema Integrado de Modelación Precipitación Aportación, desarrollado por el Centro de Estudios Hidrográficos del CEDEX), lo cual ha permitido mejorar, de forma considerable, la estimación y fiabilidad de los recursos en ambos sistemas.

Sistema Turia

En el caso concreto del sistema Turia, y como consecuencia de las importantes divergencias que presentaban las series restituidas a régimen natural con las obtenidas mediante el modelo SIMPA, se ha analizado la existencia de una transferencia de aguas subterráneas en el tramo intermedio de la cuenca, desde los acuíferos del tramo medio y alto del río (aguas arriba del embalse de Benagéber) a los de la cuenca baja.

Para el análisis de estas transferencias se ha planteado un modelo con el que se ha llegado a establecer que el 70% de los recursos renovables del tramo alto de la cuenca desaguan aguas arriba del embalse de Benagéber, mientras que el 30% restante se transfiere subterráneamente al tramo bajo en el que se reincorporan al sistema superficial. Con estos planteamientos se obtiene una justificación de las divergencias presentadas entre las series restituidas y las obtenidas con SIMPA, dado que este último modelo no contempla la posibilidad de transferencias subterráneas.

Obviamente, los resultados alcanzados han servido para proporcionar un incremento significativo de la confianza en las series de aportaciones naturales calculadas mediante el proceso de restitución a régimen natural.
Aparte de lo anterior, y en el proceso de revisión y actualización de los recursos naturales del sistema, se ha realizado una nueva estimación de las aportaciones al embalse de Arquillo de San Blas que, en las series utilizadas con anterioridad, estaban integradas en las del embalse de Benagéber.

Sistema Júcar

En el caso del río Júcar se ha realizado un importante trabajo de análisis de todos los datos disponibles que ha finalizado con una nueva propuesta de aportaciones naturales mensuales desde octubre de 1940 hasta septiembre de 2001.

De los resultados de este análisis deben destacarse los siguientes aspectos:

- Se ha propuesto una nueva metodología para la obtención de las aportaciones en régimen natural del tramo intermedio Alarcón-Molinar, modelizando el acuífero de la Mancha Oriental en forma de modelo pluricelular englobado de dos celdas.

- Actualización y validación de las aportaciones existentes aguas abajo del embalse de Tous utilizando un modelo de retornos superficiales y subterráneos, planteado en trabajos anteriores, que reproduce la compleja e intensa interacción que existe entre el sistema superficial y subterráneo.

Respecto del primero de los aspectos citados, su planteamiento surge de la necesidad de considerar los efectos que producen las extracciones del acuífero de la Mancha Oriental sobre los drenajes del mismo al río Júcar para evaluar, debidamente, los recursos en régimen natural del tramo Alarcón-Molinar. Para ello, y tras el análisis de varias alternativas, se ha optado por adoptar para el acuífero un modelo pluricelular englobado de dos celdas, una de descarga rápida y otra de descarga lenta. Con la utilización, como datos de partida, de los excedentes del recurso proporcionados por el modelo SIMPA, de las extracciones históricas del acuífero, y de las aportaciones aforadas en el tramo, se ha llegado a una calibración del modelo que proporciona unos acuerdos muy satisfactorios entre sus resultados y los datos aforados. Finalmente, el modelo ha sido validado con los datos de evolución de los niveles piezométricos en puntos de control próximos al río Júcar.

Por lo que se refiere a la actualización y validación de las aportaciones aguas abajo de Tous, se ha prolongado la serie restituida al régimen natural, obtenida en estudios.
anteriores, hasta el año 2000/2001 mediante la utilización de un complejo y completo modelo de retornos cuya única limitación es que para el tramo final del Júcar, la Albufera y el mar, los retornos se obtienen en forma agregada con distinción, únicamente, entre retornos superficiales y subterráneos.

No obstante lo anterior, la utilización de un modelo distribuido del acuífero de la Plana Sur de Valencia, cuya realización se ha llevado a cabo en el marco del trabajo objeto del presente documento, conjuntamente con el modelo de retornos citado en el párrafo anterior, ha permitido obtener cifras desagregadas de todos los retornos superficiales y subterráneos al Júcar hasta el azud de Sueca, al Júcar entre el azud de Sueca y la desembocadura, a la Albufera y al mar.

10.1.2 Recursos subterráneos

Se ha hecho una revisión de la información disponible acerca de las unidades hidrogeológicas adscritas al ámbito del estudio objeto del presente documento incidiendo, especialmente, en las posibilidades de utilización conjunta.

En ese sentido se han agrupado las unidades hidrogeológicas, a tenor de dichas posibilidades, en los siguientes grupos:

- Acuíferos de las cuencas altas, tales como las unidades de los “Montes Universales” y “Serranías de Cuenca”, que son excedentarios en recursos, con escasa explotación, y cuya doble misión en el esquema global de recursos es, y debe seguir siendo, la de alimentar subterráneamente a los acuíferos de las cuencas medias, por una parte, y la de proporcionar una componente subterránea importante a las aportaciones de los tramos altos de los ríos.

- Acuíferos de las cuencas medias, tales como los de las unidades “Llíria-Casinos”, “Buñol-Cheste”, “Mancha Oriental”, “Caroch Norte y Sur”, “Las Serranías” y “Utiel-Requena” que, en general, se caracterizan por elevados bombeos que, en algunos casos, superan el 80% de la recarga media. Se trata, en la mayor parte de los casos, de acuíferos suficientemente explotados y utilizados en esquemas de uso conjunto de recursos superficiales y subterráneos y sobre los que, en todo caso, convendría aliviar la presión dada la frágil situación de sus balances.
• Acuíferos costeros, situados en las Planas Norte y Sur de Valencia, con cifras elevadas de recursos que, unidas a los bajos costes de extracción asociados a la situación de los niveles piezométricos así como a su situación geográfica en el ámbito de zonas con elevadas demandas, los hacen especialmente indicados para su mayor explotación en uso conjunto, aún teniendo en cuenta las limitaciones necesarias derivadas de una potencial intrusión marina.

Aparte de la revisión y análisis de la información disponible, se ha llevado a cabo un análisis de mayor profundidad sobre los acuíferos de la Mancha Oriental y de la Plana Sur de Valencia, en el sistema Júcar, y sobre los acuíferos de las cuencas media y baja del sistema Turia, con los que se ha llegado a su modelación para su inclusión en el modelo global de recursos o para su utilización como herramienta de contraste del modelo global.

Concretamente, el acuífero de la Mancha Oriental, que ya se ha comentado en párrafos anteriores, ha sido modelado para su inclusión en el modelo global de recursos porque ello supone una mejora sustancial de dicho modelo respecto de otras versiones anteriores.

Respecto del acuífero de la Plana Sur se ha confeccionado, también, un modelo, cuyas características se comentarán más adelante, que no se ha incluido en el modelo global pero ha servido, entre otras cosas, de herramienta auxiliar para el estudio de los retornos de los tramos bajos del Júcar y de la sostenibilidad de los bombeos de sequía.

Así mismo, los acuíferos de las cuencas media y baja del Turia han podido modelarse, con las características que se comentarán más adelante, pero tampoco han sido incluidos en el modelo global aunque, por ejemplo, han servido para explicar las aportaciones restituidas al régimen natural teniendo en cuenta las transferencias subterráneas entre acuíferos, que ya se han comentado en párrafos anteriores.

Estos últimos modelos no se han incorporado al correspondiente modelo global de gestión dado que se consideran suficientemente válidos los modelos simplificados, que finalmente se han considerado en cada caso, por resultar innecesaria la complejidad adicional que supondría su inclusión en cuanto a incremento de datos y requerimientos de cálculo.
10.1.3 Otros recursos

Además del análisis de los recursos convencionales, se ha recopilado y analizado toda la información disponible sobre depuración de aguas residuales potencialmente reutilizables en el ámbito de las cuencas media y baja de los sistemas Júcar y Turia.

Tras el análisis de esta información se ha llegado a la conclusión de que, salvo el caso del área metropolitana de Valencia, la reutilización de las aguas residuales depuradas, si bien es una práctica muy recomendable, solo tiene una incidencia local y, en todo caso, marginal dada la escasa importancia de estos recursos frente a las correspondientes demandas.

La reutilización de aguas residuales depuradas del área metropolitana de Valencia supone, por el contrario, una fuente adicional de recursos muy estimable para el sistema Turia, e indirectamente para el sistema Júcar, pues en este caso se da una concentración de población importante, y por tanto una concentración de recursos depurados muy relevante, junto con la localización de demandas, también importantes, que pueden aprovechar dichos recursos con cierta inmediatez (acequias de la Vega de Valencia y acequia de Moncada).

De hecho, esta potencialidad de reutilización de recursos depurados propició la elaboración, en 1998, del “Plan de reutilización de aguas residuales depuradas del área metropolitana de Valencia” (de la C.O.P.U.T. de la Generalidad Valenciana) en el que se prevéían una serie de actuaciones infraestructurales encaminadas al aprovechamiento de dichos recursos en el regadío de la parte baja del sistema Turia, por una parte, y al suministro de caudales ecológicos a la Albufera que podrían liberar los correspondientes caudales previstos, con el mismo fin, en el sistema Júcar.

En la actualidad dicho Plan está en proceso de materialización, e incluso con fases ya ejecutadas y en explotación, pudiéndose apuntar, adicionalmente, que los recursos previstos para la Albufera podrían, incluso, ser incrementados con alguna inversión adicional.
10.2 USOS DEL AGUA

10.2.1 Usos sectoriales

Tras la revisión de los recursos de los sistemas en estudio, se ha llevado a cabo una revisión de los usos urbanos, industriales y agrarios analizando, por un lado, las estimaciones de cada una de las demandas existentes y, por otro, los suministros superficiales realizados en los últimos años a cada una de las unidades de demanda existentes.

Sistema Turia

Se han analizado las siguientes demandas urbanas suministradas con recursos superficiales del río Turia:

- Abastecimiento a Teruel, desde el embalse de Arquillo de San Blas
- Abastecimiento a Valencia desde la toma de la E.T.A.P. de Manises

Respecto de esta última se ha apreciado un fuerte descenso de los volúmenes tomados en los últimos años debido a la mejor calidad del agua procedente del río Júcar que llega a la E.T.A.P. de Manises a través del Canal Júcar-Turia y que, por tanto, es preferida por la empresa que gestiona el abastecimiento de Valencia.

Las demandas agrícolas consideradas han sido las siguientes:

- Riegos del Canal del Campo del Turia, que es la zona con mayor demanda agrícola del sistema, con suministro de recursos superficiales desde el embalse de Benagéber, complementados con recursos subterráneos.
- Riegos de Pueblos Castillo, suministrados por las acequias de Villamarchante, Benaguacil y Lorca con sus tomas aguas abajo del embalse de Loriguilla.
- Riegos tradicionales de la acequia de Moncada desde su toma en Manises
- Riegos tradicionales de la Vega de Valencia suministrados por las acequias de Quart, Favara, Rascanya, Tormos, Mislata, Mestalla y Rovella.

Los tres últimos son riegos tradicionales con la característica común de sus bajas eficiencias pero por delante, en prioridad, de los riegos del Campo del Turia.
Globalmente, el conjunto de demandas agrícolas supone casi un 80% de las demandas totales del sistema.

Sistema Júcar

Se han analizado las siguientes demandas urbanas suministradas con recursos superficiales del río Júcar:

Abastecimiento a Valencia, a través del Canal Júcar-Turia que suministra las E.T.A.P. de Picassent y Manises

Abastecimiento a Sagunto, también a través del Canal Júcar-Turia y de una conducción que enlaza el Turia con los depósitos de abastecimiento a Sagunto.

Respecto del abastecimiento a Valencia se ha observado, en los últimos años, un incremento notable de los volúmenes tomados del Canal Júcar-Turia, en la misma medida en la que se han producido descensos de volúmenes tomados del río Turia por las razones de calidad apuntadas antes.

En cuanto al abastecimiento a Sagunto debe reseñarse, únicamente, que su puesta en servicio es muy reciente (julio 2000) iniciándose con un caudal en precario muy distante, todavía, del asignado en el PHJ.

Debe añadirse, finalmente, que a estos abastecimientos habrá que añadir, en un futuro próximo, el abastecimiento a Albacete que en verano de 2002 se encontraba en fase de pruebas de las instalaciones.

Las demandas industriales consideradas se han centrado, exclusivamente, en el principal uso consuntivo industrial, no incluido en los suministros de las redes de abastecimiento urbano, que es el de la refrigeración de la Central Nuclear de Cofrentes. Se han analizado los datos disponibles desde 1992/93 constatándose que los volúmenes consumidos están ligeramente por debajo de la asignación máxima establecida por el Plan Hidrológico de Cuenca del Júcar.

Las principales demandas agrícolas que utilizan aguas superficiales se encuentran ubicadas, todas ellas, aguas abajo de Tous. Así, el análisis y caracterización de dichas demandas se ha efectuado sobre:

- Riegos del Canal Júcar-Turia, suministrados por el propio Canal a lo largo de su recorrido. Estos suministros superficiales se complementan con recursos...
subterráneos en un esquema de uso conjunto que ya es tradicional en esta zona regable.

- Riegos tradicionales del Júcar, que suponen la mayor parte de las demandas agrícolas y en los que se distingue:
 - Acequias superiores
 - Acequia Real del Júcar
 - Acequia de Antella
 - Acequia de Escalonha
 - Acequia de Carcaixent
 - Acequias inferiores
 - Acequia de Cuatro Pueblos
 - Acequia de Sueca
 - Acequia de Cullera

Respecto de los riegos tradicionales, caracterizados todos ellos por las bajas eficiencias, solo cabe destacar que comparando los suministros a dichos riegos con los volúmenes establecidos por el Plan de Cuenca, se aprecia que mientras en las acequias superiores no se rebasan dichos volúmenes, en las inferiores son casi siempre rebasados debido, claramente, a la existencia de los retornos de riegos de las acequias superiores a las inferiores y a las aportaciones naturales del tramo final del Júcar.

En cifras globales, el conjunto de demandas agrícolas supone algo más del 85% de las demandas totales del sistema.

Finalmente, para completar estos análisis se han estudiado, por una parte, los caudales trasegados por el acueducto Tajo-Segura por ser el embalse de Alarcón un elemento de paso de dichos caudales y, por otra, las transferencias desde el Júcar a:

- Sistema de la Marina Baja, desde 1999, a través del acueducto Tajo-Segura, infraestructuras de la Mancomunidad de Canales del Taibilla y la conducción Fenollar-Amadorio
- Abastecimiento urbano de la zona de Alicante, vía Canales del Taibilla
A la Mancha Oriental para sustitución de bombeos, desde el año 2001, con agua procedente del Júcar, y como compensación, con agua del trasvase Tajo-Segura, por el drenaje del acuífero debido a la construcción del túnel de dicho trasvase.

10.2.2 Usos medioambientales

Para completar el análisis de los usos del agua, se ha estudiado el grado de cumplimiento de los caudales ecológicos fijados por el Plan Hidrológico de Cuenca sobre la base de los datos procedentes del Área de Explotación, de los registrados en las estaciones foronómicas del Servicio de Hidrología, y de los datos de las estaciones SAIH de la Confederación Hidrográfica del Júcar.

El análisis de estos datos se ha efectuado desde la fecha de aprobación del Plan de Cuenca (1998) resultando que en todos los casos se ha cumplido el caudal ecológico, excepto en el río Magro en el que, aunque desde el embalse de Forata se realizan sueltas superiores al caudal medioambiental fijado, las tomas para riego y las infiltraciones reducen el caudal circulante aguas abajo no alcanzándose el caudal mínimo fijado por el Plan en el último tramo del río.

10.3 GESTIÓN DE LAS CUENCAS Y SU MODELACIÓN

10.3.1 Sistemas de explotación y reglas de gestión

En el ámbito del trabajo objeto del presente documento, se distinguen dos sistemas de explotación (Sistema Turia y Sistema Júcar) que se explotan de forma independiente, salvo la conexión existente mediante el Canal Júcar-Turia que, en la actualidad, no se utiliza para la explotación conjunta de los sistemas excepto en lo relativo al abastecimiento a Valencia que ya se ha comentado en párrafos anteriores.

La situación actual de ambos sistemas, y sus reglas generales de gestión, son las siguientes:

Sistema Turia

De los tres embalses principales del sistema, el de Arquillo de San Blas regula la parte alta de la cuenca, permitiendo un suministro de suficiente garantía al abastecimiento de Teruel, mientras que los de Benagéber y Loriguilla regulan las cuencas media y baja permitiendo el suministro a las demandas de riego y a la ciudad de Valencia.
Las prioridades entre demandas se rigen por lo contenido en el artículo 31 del Plan Hidrológico de Cuenca, que establece que los recursos regulados en el sistema de embalses Benagéber-Loriguilla y los caudales fluyentes aguas abajo de este embalse se asignarán por el orden siguiente:

1º.- Abastecimiento de Valencia

2º.- Atención de los riegos tradicionales (Pueblos Castillo, ac. de Moncada y Vega de Valencia)

3º.- Atención de los riegos de la zona regable del Camp del Turia.

Sistema Júcar

De los once embalses del sistema los de mayor importancia, desde el punto de vista de la gestión del sistema, son los de Alarcón, Contreras y Tous. En ellos, fundamentalmente, se regulan los recursos destinados a los suministros de las principales demandas urbanas (Valencia, Sagunto y en un futuro próximo Albacete) y demandas agrícolas entre las que destacan, por su importancia relativa, las de aguas abajo de Tous (Riegos tradicionales y riegos del Canal Júcar-Turia).

La prioridad entre demandas se rige por establecido en el artículo 32 del Plan Hidrológico de Cuenca que fija, en resumen, el siguiente orden de prioridades:

1º.- Abastecimiento urbano a Valencia, Sagunto y Albacete

2º.- Riegos tradicionales del Júcar

3º.- Canal Júcar-Turia y sustitución de bombeos de la Mancha Oriental

Aparte de la gestión de los recursos superficiales, en ambos sistemas, hay un importante grado de explotación de aguas subterráneas como recurso único, en unos casos, y en conjunto con recursos superficiales, en otros.

Aunque hay amplias zonas de utilización conjunta de recursos superficiales y subterráneos en los dos sistemas, como es el caso de los riegos del Canal del Camp del Turia, en el sistema Turia, y los riegos del Canal Júcar-Turia, en el sistema Júcar, se ha analizado la posibilidad de plantear nuevos esquemas de este tipo resultando que las mayores posibilidades potenciales se sitúan en conexión con los acuíferos costeros de la Plana Norte y Plana Sur de Valencia en los que se dan dos circunstancias favorables: a) existencia de margen de explotación a bajo coste y b) existencia de importantes zonas
de riego, sobre dichos acuíferos, que son atendidas por recursos superficiales y en las que el uso conjunto sería un seguro de garantía adicional.

10.3.2 Modelación de la gestión

Para el análisis de la gestión de recursos, tanto en la situación actual como en distintos escenarios futuros, se ha utilizado el modelo matemático de simulación de la gestión de recursos hídricos “SIMGES”, integrado en el Sistema Soporte de Decisión para la Planificación y Gestión de Recursos Hídricos AQUATOOL.

En resumen, los esquemas planteados para cada sistema son los que se comentan a continuación.

Sistema Turia

En el caso del sistema Turia, del que ya había una modelación previa al desarrollo del trabajo objeto del presente documento, se ha efectuado una actualización en la que destaca la inclusión del embalse de Arquillo de San Blas, y del abastecimiento a Teruel desde dicho embalse, así como la inclusión de la nueva serie de aportaciones al embalse que ya se ha comentado en párrafos anteriores.

Así, el esquema de gestión básico ha quedado configurado por:

- Todas las infraestructuras fundamentales del sistema (embalses de Arquillo, Benagéber y Loriguilla, y tramos de río de distintas características)
- Las aportaciones hidrológicas correspondientes a cada tramo entre los nudos considerados
- Las demandas agrarias (cabecera del Turia, Canal Campo del Turia, Pueblos Castillo, Acequia de Moncada y riegos tradicionales del Turia) y las demandas urbanas (Teruel, comarca de Camp del Turia y Valencia)
- Los retornos que se producen en determinados tramos (retornos de riego de Pueblos Castillo y retornos del abastecimiento urbano de Teruel)
- Un elemento acuífero que recibe las pérdidas por infiltración, que se sabe que se producen desde el embalse de Loriguilla, y que es drenado por el río aguas abajo del mismo.
Sistema Júcar

El complejo sistema de la cuenca del río Júcar puede ser conceptualizado para la modelación de su gestión en fase de planificación con distintas resoluciones, contemplando los distintos elementos que lo componen ya sea de forma detallada o agregada, dependiendo de la finalidad del modelo y del tipo de resultados que se desea obtener para su análisis.

En el ámbito del trabajo objeto del presente documento, se ha pretendido disponer de un modelo de simulación para el análisis en la fase de planificación que, a su vez, fuese válido para su aplicación en la fase de gestión.

El esquema de gestión básico ha quedado configurado por:

- Las infraestructuras fundamentales del sistema (embalses de Alarcón, Contreras, Molinar, Cortes, Naranjero y Tous, y tramos de río de distintas características). El esquema incluye el acueducto Tajo-Segura como una conducción que parte del embalse de Alarcón.
- Las aportaciones hidrológicas correspondientes a cada tramo entre los nudos considerados. En este sentido hay que puntualizar, además, que los ríos Magro, Verde, Sellent y Albaida se han conceptualizado como un elemento de aportación aguas abajo de Tous, entre el azud de Antella y la toma de la acequia de Sueca.
- Las demandas de la ciudad de Albacete, del trasvase a la Marina Baja, de la sustitución de bombeos de la Mancha Oriental y el suministro a la Mancomunidad del Taibilla, todas ellas servidas por la conducción que representa el acueducto Tajo-Segura.
- Las demandas agrarias aguas abajo de Tous (Riegos del Canal Júcar-Turia, riegos de la Ribera Alta, riegos de Sueca y Cuatro Pueblos y riegos de Cullera).
- Las demandas urbanas de Albacete, Valencia y Sagunto.
- La demanda de la Central Nuclear de Cofrentes
- Los retornos superficiales que se producen en determinados tramos (de los riegos de la Ribera Alta y de los riegos de Cuatro Pueblos
- Distintos elementos acuíferos:
- Acuífero de la Mancha Oriental, conectado con el río. Los bombeos del acuífero de la Mancha se han incorporado como una demanda en conexión con el mismo

- Un elemento acuífero que recoge las filtraciones del embalse de Contreras y las incorpora al río, aguas abajo, con un desfase temporal

- Dos elementos acuíferos, uno en la margen derecha del río y otro en la izquierda, aguas abajo de Tous, que incorporan al río los retornos subterráneos de los riegos de la Ribera Alta.

- Un elemento acuífero, en conexión con una conducción y con la Albufera, con un esquema que registra los retornos superficiales y subterráneos a la misma.

10.3.3 Modelación hidrodinámica de acuíferos

Aparte de la modelación de la gestión de las cuencas, descrita en el apartado anterior, se han elaborado dos modelos distribuidos de flujo subterráneo. Uno para los acuíferos de las cuencas media y baja del Turia, y otro para el acuífero de la Plana Sur de Valencia.

El modelo de los acuíferos del Turia se ha desarrollado con el objeto de cuantificar las detracciones que producen los bombeos en dichos acuíferos en las aportaciones naturales del río en su parte baja.

El modelo de la Plana Sur de Valencia se ha desarrollado con dos objetivos:

a) Contrastar los modelos simplificados de acuíferos del modelo de gestión de la cuenca que, como ya se ha dicho antes, representan el funcionamiento de los retornos subterráneos de los riegos de la Ribera Alta al río, a la Albufera, y al mar.

b) Disponer de un modelo de referencia, a un cierto nivel de detalle espacial, para estimar los efectos de las políticas de utilización conjunta que pueden plantearse en la zona mediante la extracción de agua de este acuífero.

A pesar de disponer de los dos modelos citados, los acuíferos correspondientes se han incluido en los modelos de gestión en forma simplificada, pues se ha considerado que los modelos simplificados son suficientemente válidos, siendo innecesaria la complejidad adicional que supondría la utilización de los modelos distribuidos desarrollados.
En forma resumida, las características y resultados obtenidos con los modelos desarrollados son los siguientes:

Modelo de los acuíferos de las cuencas media y baja del Turia

Estos acuíferos se conocen de manera muy imprecisa debido a la gran complejidad litológica y estructural y, en consecuencia, hidrogeológica que no permite un análisis detallado y preciso de su funcionamiento. De hecho, en diversos estudios anteriores se han considerado las distintas unidades como un solo acuífero, llegando a cuantificar los distintos componentes del balance, pero sin detallar la metodología utilizada ni las incertidumbres existentes sobre los componentes del balance.

En el ámbito del trabajo objeto del presente documento se ha recurrido, con los fines citados antes, a la elaboración de un modelo agregado en el que cada unidad se representa por una, dos o tres celdas. Concretamente, en el modelo están representadas las siguientes unidades:

- Buñol-Cheste, con una celda
- Líria-Casinos, con dos celdas
- Carraixet Náquera-Puzol, con una celda
- Plana de Valencia Norte, con tres celdas

Con este modelo se ha efectuado la simulación, a escala de tiempo mensual desde octubre de 1970 a septiembre de 2001, teniendo en cuenta los bombeos producidos históricamente, obteniéndose resultados de la evolución de los niveles piezométricos, de los caudales de relación río-acuífero, de la disminución de reservas en las celdas y, finalmente, de las detracciones al río. Las conclusiones que se obtienen de esta simulación indican que los niveles y reservas están en descenso, y las detracciones en ascenso, no siendo posible llegar a su estabilización si se mantienen los niveles de bombeos actuales.

Modelo de la Plana Sur

Tras el estudio de varios antecedentes relativos a la modelación de este acuífero, y sobre la base del último de ellos que se encuentra en el “Estudio del Plan General de adecuación del sistema de explotación de los aprovechamientos tradicionales del Júcar”
(CHJ, 1997), se ha elaborado un modelo MODFLOW de la zona que se corresponde básicamente con la unidad hidrogeológica 8.26 (Plana Sur de Valencia) más la parte de la unidad 8.25 (Plana Norte de Valencia) comprendida entre la Albufera y la ciudad de Valencia, con el objeto de que toda la Albufera quedara integrada en el modelo.

Aunque la discretización utilizada ha sido la misma que en el antecedente citado, las variables de explotación y los parámetros hidrogeológicos han sido sometidos a revisión y recalibración con las siguientes particularidades:

- a) Los bombeos urbanos han sido actualizados a partir de los datos recientes de inventario de infraestructuras de abastecimiento urbano de la Consellería de Obras Públicas de la Generalidad Valenciana, completando y contrastando la información con datos de la C.H.J. y, en su caso, de los propios Ayuntamientos.
- b) Los bombeos agrícolas de la zona regable del Canal Júcar-Turia han sido revisados y contrastados con los datos de los servicios técnicos de la Comunidad de Usuarios del Canal Júcar-Turia, desde su puesta en explotación.
- c) Las recargas de lluvia han sido modificadas con la utilización de los resultados proporcionados por el modelo SIMPA extraídos de los trabajos actuales de la Oficina de Planificación Hidrológica de la C.H.J.
- d) El proceso seguido para la verificación del modelo ha consistido en simular el período histórico 1969-2000 comprobando la bondad de los resultados con tres indicadores: Comparación del mapa de isopiezas del modelo con los reales disponibles, comparación de la evolución de niveles dada por el modelo con valores observados en piezómetros disponibles y, finalmente, análisis de los drenajes al Júcar.

Con el modelo validado se ha obtenido un balance global del acuífero que ha mostrado, como conclusión general, la posibilidad de un mayor aprovechamiento de los recursos subterráneos del que actualmente se produce.

Por otra parte, en trabajos anteriores se había desarrollado un modelo agregado que reproduce los flujos de agua existentes en el río Júcar entre el embalse de Tous y su desembocadura, obteniendo las aportaciones naturales al río Júcar entre el embalse de Tous y el azud de Sueca, para lo cual entran en juego los retornos de riego procedentes de las zonas de riego de la Ribera Alta que se descomponían en retornos a dicho tramo.
del río, por una parte, y resto de retornos (al tramo final del río, a la Albufera y al mar), por otra.

Aprovechando la operatividad y buenos resultados obtenidos con el modelo distribuido de la Plana de Valencia, se ha procedido a contrastar los resultados obtenidos con éste y los obtenidos con el modelo agregado anterior, comparando los drenajes al río Júcar aguas arriba del azud de Sueca y el resto de drenajes. La comparación ha proporcionado un alto nivel de semejanza y ha permitido, adicionalmente, descomponer el “resto de drenajes” del modelo agregado en sus distintas componentes (al tramo final del río, a la Albufera y al mar) sobre la base de los resultados que proporciona el modelo distribuido del acuífero.

10.4 ANÁLISIS Y DIAGNÓSTICO DE LA SITUACIÓN ACTUAL Y DE LAS PREVISTAS EN EL PHC Y PHN

Con los modelos de gestión desarrollados se ha llevado a cabo el análisis de los sistemas Turia y Júcar en la situación actual, en condiciones ordinarias, y en otras situaciones previsibles.

Los resultados y conclusiones alcanzadas han sido las siguientes:

Sistema Turia

Se ha analizado en primer lugar la situación actual y la previsible a corto plazo, utilizando el orden de prioridades establecido en el Plan Hidrológico del Júcar que ya se ha comentado en otro punto (1º.- Abastecimiento de Valencia, 2º.- Atención de los riegos tradicionales y 3º.- Atención de los riegos de la zona regable del Camp del Turia).

Para la simulación del sistema se ha considerado el suministro anual para la demanda del Campo del Turia, tal como se indica en el Plan Hidrológico de la cuenca, para, de forma complementaria, aplicar distintos niveles de restricción al suministro de esta demanda con el objeto de mantener en niveles aceptables las garantías del resto de demandas del sistema.

La restricción aplicada ha consistido en la utilización de un indicador que es la suma de volúmenes almacenados en los embalses de Benagéber y Loriguilla, de tal manera que si dicha suma de volúmenes está por debajo de un cierto umbral no se realiza ningún suministro al Canal del Campo del Turia.
Así, se han efectuado diversas simulaciones para distintos valores del citado umbral, con cuyos resultados puede observarse, para la serie histórica de aportaciones, la evolución de las garantías de las distintas demandas.

Las conclusiones alcanzadas respecto de la situación actual pueden resumirse en la forma siguiente:

- Existe garantía del 100% en las demandas urbanas de Valencia y Teruel a lo largo de todo el período histórico.
- Durante la mayor parte del periodo histórico simulado (1940/41 a 1999/00) pueden satisfacerse todas las demandas del sistema en un 100%.
- Existen dos períodos secos (de 1982 a 1988 y de 1992 a 2000) que marcan las posibilidades de aprovechamiento del sistema. En estos períodos se producen déficits y restricciones en los suministros a las demandas.
- Los últimos años del segundo período seco (1998/99 y más intensamente en 1999/00) se agudiza la situación de sequía, determinando un umbral o volumen de reserva en los embalses de Benagéber y Loriguilla algo superior al establecido en estudios anteriores al presente.

En resumen, del análisis de la gestión del sistema del Turia, en la situación actual, hay que destacar la posibilidad de realizar el suministro anual máximo establecido en el Plan Hidrológico de Cuenca para la demanda del Canal del Campo del Turia, en situación ordinaria, sin que ello produzca pérdidas de garantía de suministro en el resto de las demandas estableciendo, para ello, un volumen de reserva de 100 hm³ en los embalses de Benagéber y Loriguilla que garantiza el suministro a las demandas de mayor prioridad del sistema.

Únicamente en períodos de escasez de recursos se producen déficits en la demanda del Canal del Campo del Turia, que requiere la utilización de los recursos subterráneos para su satisfacción.

Por lo que se refiere a la situación previsible del sistema a medio plazo, resulta que con la reutilización de las aguas residuales del área metropolitana de Valencia, comentada en un apartado anterior (“Plan de reutilización de aguas residuales del área metropolitana de Valencia” de la C.O.P.U.T., 1998), junto con la modernización de los riegos tradicionales de la Acequia de Moncada, la expansión urbana de esta zona y la consiguiente reducción de superficies agrarias actuales, será posible un reordenamiento
de los recursos del sistema de forma que será posible atender, con aguas superficiales, incluso las demandas urbanas actuales y futuras de la comarca del Camp del Turia (Ribarroja, La Eliana, Benaguacil, etc.).

Finalmente, en el marco del trabajo objeto del presente documento, se ha estudiado la posibilidad adicional de incrementar las garantías de la zona regable de la Acequia de Moncada mediante el equipamiento de unos pozos de sequía, ya existentes a lo largo del trazado de la Acequia, complementados con nuevos pozos que se constituirían como un importante elemento de garantía y seguridad como tales pozos de sequía o, incluso, para establecer un esquema de utilización conjunta de uso sistemático; aunque dadas las circunstancias descritas en el párrafo anterior no sea previsible la necesidad de este último planteamiento, que tal vez fuera conveniente en caso de establecer caudales ecológicos o una mayor contribución del Turia al abastecimiento urbano con aguas superficiales.

Sistema Júcar

Mediante el modelo de simulación de la gestión del sistema Júcar se han simulado diferentes alternativas con el objetivo de analizar las garantías que presenta el sistema en la situación actual y en las previstas por el Plan Hidrológico del Júcar y el Plan Hidrológico Nacional.

La metodología empleada consiste en simular con la serie histórica (1940/41-2000/01), obtenida mediante el proceso de restitución a régimen natural, diferentes escenarios de demanda partiendo todos ellos de la situación actual que presenta el sistema (año 2001).

Debe indicarse que los resultados obtenidos no son la reproducción de las situaciones pasadas que ha tenido el sistema, sino que corresponden al comportamiento futuro que tendría el sistema si se dieran las distintas condiciones definidas en él (escenarios de demandas, reglas de gestión, etc.).

La incorporación de los nuevos usuarios al sistema del río Júcar y la aplicación, de cara a la gestión del sistema, del reciente convenio entre la Unión Sindical de Usuarios del Júcar USUJ y el Ministerio de Medio Ambiente, plantean la necesidad de analizar y determinar las garantías de suministro a las demandas existentes en la cuenca, así como
definir las normas de explotación del sistema en función de los recursos disponibles en la cuenca.

Por otro lado, en la actualidad se cuenta de forma operativa con una serie de pozos de sequía situados en el ámbito de los regadíos tradicionales de la Ribera del Júcar. La utilización de estos pozos en periodos de sequía puede paliar de forma considerable los efectos de las mismas, por lo que debe definirse la capacidad de bombeo a utilizar así como el momento de activación de estos pozos de emergencia, pues una activación anticipada puede mejorar el rendimiento del sistema.

Por estos motivos, y para conseguir una gestión optimizada del sistema Júcar es necesario definir las condiciones de gestión del sistema que tengan en consideración la utilización de los pozos de sequía y la aplicación de medidas de ahorro en períodos de escasez.

Las reglas de gestión que se han utilizado en el modelo de simulación se inspiran en la gestión producida en los últimos años, que se encuentra muy influenciada por la fuerte sequía sufrida en el Júcar en los años 1994/95 y 1995/96, y que ha introducido importantes criterios de racionalidad y eficiencia hídrica en la gestión del sistema.

Las reglas de gestión que se definen para el sistema se basan en dos indicadores de estado del sistema: los recursos disponibles en el embalse de Alarcón, y los recursos disponibles en el conjunto de los embalses de Alarcón, Contreras y Tous; y quedan establecidas en cuatro niveles:

5. **normal**.- Corresponde al caso en que el volumen almacenado en el embalse de Alarcón sea mayor que el volumen definido en la curva del Convenio. Se realizará el suministro a todas las demandas sin aplicar restricciones.

6. **escasez en Alarcón**.- Corresponde al caso en que el volumen almacenado en el embalse de Alarcón es inferior a la curva del Convenio, pero el volumen almacenado en el conjunto del sistema supera dicha curva. Se inicia la puesta en funcionamiento de los pozos de sequía de la Ribera del Júcar, manteniéndose el suministro a todas las demandas del sistema.

7. **leve escasez en el conjunto del sistema**.- Corresponde al caso en que el volumen almacenado en el conjunto de los tres embalses es inferior a la curva del Convenio y superior a 200 hm³ (incluyendo los volúmenes muertos de los embalses). Se mantiene la extracción de agua subterránea de los pozos de sequía de la Ribera del Júcar, y se
aplican medidas de ahorro sobre las demandas agrícolas: 1) reducir el suministro total a los Riegos de la Ribera del Júcar en un 10 % y 2) reducir en un 20 % el suministro total al resto de riegos del sistema. La adopción de estas medidas está basada en las reducciones de suministro producidas en la campaña de riegos del año 2000, donde el conjunto de embalses se encontraba próximo a los 200 hm3 y finalmente se aplicaron unos ahorros similares a los descritos.

8. **grave escasez en el conjunto del sistema**.- Corresponde al caso en que el volumen almacenado en el conjunto de los tres embalses es inferior a 200 hm3 (incluyendo los volúmenes muertos de los embalses). Se mantiene la extracción de agua subterránea de los pozos de sequía de la Ribera del Júcar, y se procede a la aplicación de mayores medidas de ahorro sobre las demandas agrícolas: 1) reducir el suministro total a los Riegos de la Ribera del Júcar en un 25 % y 2) reducir en un 30 % el suministro total al resto de riegos del sistema. La adopción de estas medidas está basada en las reducciones de suministro producidas en la campaña de riegos del año 1996, donde el conjunto de embalses se encontraba próximo a los 100 hm3 y finalmente se aplicaron unos ahorros similares a los descritos.

Por otra parte, los escenarios de demanda contemplados corresponden a los escenarios de demanda definidos en el Plan Hidrológico de cuenca, asignaciones y reservas, así como a otros escenarios de demanda previsibles en el sistema a corto, medio y largo plazo.

Todas las alternativas consideran una demanda neta de aguas subterráneas de 368 hm3/año en el acuífero de la Mancha Oriental (correspondiente a una demanda bruta de 460 hm3/año). Dicha cifra se reduce en función del volumen de sustitución de bombeos definido en cada escenario. Pero, como no todos los años de la simulación es posible servir el volumen establecido en la sustitución de bombeos, se ha considerado que dicha sustitución se complementa con la puesta en marcha, de forma temporal en los años sin aguas superficiales, de los pozos que han sido objeto de la sustitución.

Se han considerado además tres capacidades distintas de extracción para los pozos de sequía de la Ribera del Júcar, correspondientes a distintos grados de utilización espacial y temporal.

Todas las alternativas de demanda que se plantean parten de la situación actual en la que se encuentra el acuífero, que se corresponde con la obtenida durante la restitución de las aportaciones a régimen natural.
Se han realizado múltiples simulaciones del sistema con los diferentes escenarios de demanda y reglas de gestión (diferentes capacidades de bombeo de los pozos de sequía existentes. El análisis de los resultados de cada una de las simulaciones efectuadas, y las comparaciones entre las distintas hipótesis han resultado muy útiles para aclarar las consecuencias de cada una de las situaciones dada la alta interacción entre los distintos elementos del sistema.

Resulta difícil resumir los resultados obtenidos para un sistema tan complejo, pero las principales conclusiones que se pueden extraer de interés para el presente estudio son las siguientes:

- Los resultados obtenidos para las simulaciones con la hidrología histórica están muy marcados por la disminución de aportaciones que se experimenta en el periodo que va desde Octubre de 1980 hasta la actualidad. Este periodo es el periodo crítico en el sistema y es el que condiciona los valores de los indicadores de garantía, sobre todo del indicador correspondiente a los déficits acumulados para uno, dos y diez años consecutivos.

- En todas las alternativas las demandas urbanas tienen garantías elevadas, excepto en la alternativa correspondiente a las asignaciones y reservas a largo plazo del plan hidrológico de la cuenca del Júcar, en la que se alcanzan valores inaceptablemente bajos.

- En todas las alternativas las garantías de los riegos de la Mancha Oriental son prácticamente totales pues, incluso en las alternativas en que se realiza sustitución de bombeos con aguas superficiales, cuando estas sustituciones no pueden llevarse a cabo por ser época seca, se pueden obtener recursos bombeando del acuífero.

- La sustitución de bombeos en los riegos y abastecimiento de la zona de la Mancha hace que, en las hipótesis que la contemplan, la detracción del acuífero al río Júcar disminuya durante las épocas húmedas y normales, aunque en los periodos más secos dicha detracción vuelva a repuntar.

- Respecto del Canal Júcar Turia, se observa la necesidad y conveniencia de seguir manteniendo políticas de uso conjunto para el mismo, ya que en los periodos más críticos puede resultar imposible cubrir la totalidad del suministro superficial a dicha demanda.
- Las garantías de las zonas regables de la Ribera del Júcar son relativamente altas en todas las alternativas.

- Tras la modernización de los regadíos tradicionales, las sueltas medias necesarias desde el embalse de Tous para los riegos de la Ribera del Júcar pasan de 470 a 360 hm³/año, lo cual supone un ahorro real de unos 110 hm³/año. Pero de los 360 hm³/año de sueltas de Tous 130 son con destino a los riegos de la Ribera Baja del Júcar, frente a los 100 necesarios anteriormente.

- La evolución de los vertidos al mar está muy asociada al nivel de utilización del agua en la cuenca, en las alternativas con mayor uso de agua y menor garantía en las demandas los vertidos son menores y a la inversa.

- Las entradas a la Albufera de Valencia procedentes de los retornos de riego de la Ribera Alta se reducen de forma considerable tras la modernización de los regadíos tradicionales, pasando éstos de 55 a 20 hm³/año.

- El uso de los pozos de sequía es una práctica de utilización conjunta muy recomendable. De los análisis realizados se concluye que el aumento en la utilización de los pozos de sequía existentes en la zona de los regadíos tradicionales del Júcar supone una importante mejora en la garantía al suministro de esta demanda, no afectando e incluso mejorando ligeramente la garantía de los riegos de la Ribera Baja del Júcar. Como afecciones producidas por la utilización de estos pozos de sequía aparecen las reducciones en los retornos de riego de la Ribera Alta a la Albufera de Valencia. Esta reducción de retornos a la Albufera de Valencia quedaría cubierta con la futura reutilización de las aguas residuales urbanas de la Ciudad de Valencia tratadas en la depuradora de Pinedo, estando prevista de forma inmediata la derivación de un volumen por motivos medioambientales de 31 hm³/año (1 m³/s). En cuanto a las afecciones a los drenajes naturales del acuífero de la Plana Sur, se han simulado con el modelo matemático distribuido MODFLOW estas alternativas de uso conjunto. Un bombeo continuado de 29 hm³ sobre el acuífero provoca una disminución de drenajes al Júcar de 21.1 hm³/año, mientras que la Albufera vería disminuida sus recargas subterráneas en unos 5.6 hm³/año. Estos valores dentro del balance global del acuífero son perfectamente sostenibles, pudiéndose incrementar durante los períodos secos el bombeo hasta 71 hm³.

- Las afecciones producidas a los volúmenes suministrados a los riegos tradicionales del Júcar debido a las transferencias de agua previstas a los sistemas Vinalopó y Marina.
Baja, son de escasa entidad en la situación previsible a medio plazo, ya que los suministros realizados con la existencia de transferencias del Júcar al Vinalopó son muy similares a los que se realizaría si no existiese esta transferencia. El valor medio de transferencias en la alternativa previsible a medio plazo es de 72,5 hm³/año, si bien en los períodos más críticos la cuantía de las transferencias puede llegar a disminuir hasta casi los 20 hm³/año.

Como conclusión final cabe decir que en cualquiera de las alternativas contempladas, el sistema del Júcar es un sistema con una fuerte utilización de los recursos, y con muy poca holgura, incluso con prácticas de ahorro (incluida la modernización de regadíos), uso conjunto y reutilización. Por lo tanto, resulta vital el continuo y atento seguimiento del estado del mismo, el control estricto de los suministros a las diversas demandas, y la aplicación de normas de gestión como la descrita anteriormente, complementadas con una evaluación del riesgo de déficits en situaciones de sequía.

Hay que mencionar el importante papel que la utilización conjunta de recursos superficiales y subterráneos juega en el aumento de sistema, tanto en el aspecto cuantitativo del recurso, como en el aumento de garantías. La modalidad fundamental de utilización conjunta que se propugna es la del uso alternativo, esto es, mayor utilización de aguas superficiales en épocas húmedas, en las que se permite una fuerte recuperación de los acuíferos por ser mayor la recarga, y mayor utilización de las aguas subterráneas en épocas secas en que las aguas superficiales son más escasas. Este procedimiento pone en juego importantes volúmenes de almacenamiento en los acuíferos importantes del sistema, como son el acuífero de la Mancha Oriental y el de la Plana Sur de Valencia. Esta modalidad es la actualmente empleada en los riegos del canal Júcar-Turía con el acuífero de la Plana Sur, y también se podrá realizar en el futuro cuando se establezca la sustitución de bombeos en los riegos de la Mancha con el acuífero de la Mancha Oriental. En estos dos casos, los bombeos se efectúan de forma relativamente distribuida mediante muchos pozos individuales. Además, el uso de pozos de sequía en el canal Jucar-Turía y en la Ribera del Júcar constituye una variante de utilización alternativa ya disponible, y que en el segundo caso permite una mayor eficiencia económica debido a la poca profundidad del nivel freático, así como una mayor eficiencia hidráulica y del sistema en su conjunto, pues una unidad de volumen bombeada en pozos de sequía e incorporada en lugares concretos del sistema de distribución supone un ahorro de un volumen superior de agua superficial, que por su
situación en los embalses de aguas arriba puede ser utilizada para abastecer otras demandas que no tendrían ningún recurso disponible en esas épocas de sequía.

Respecto a la evaluación del riesgo de déficits, hay que destacar también que, para el análisis de la gestión del sistema del Júcar en situaciones de sequía se ha actualizado, con los avances producidos en el presente estudio, el sistema de apoyo a la decisión (SAD) en materia de gestión del recurso con especial énfasis en la gestión anticipada de sequías, que se había implantado en el Área de Explotación de CHJ por el DIHMA durante el desarrollo del Convenio “Implantación en la CHJ de Herramientas de decisión en materia de Explotación de Recursos Hídricos” (DIHMA, 2001). Mediante la utilización de esta herramienta, al inicio o a lo largo de cada campaña es posible conocer, desde el punto de vista probabilístico, cómo quedará el sistema al finalizar la misma o la siguiente. De esta forma es posible poner en funcionamiento de forma anticipada las acciones necesarias para la mitigación de los efectos de la sequía, constituyéndose esta metodología en un potente indicador de alarma temprana del sistema frente a situaciones de escasez de recursos hídricos, y permitiendo cuantificar los efectos que tendrán cada una de las medidas propuestas.

El SAD, a partir de la información sobre el estado de las reservas en los embalses, los caudales recientes en los ríos, y el estado de los acuíferos, proporciona información sobre los riesgos de fallo del sistema que se afrontan en los meses del horizonte futuro (de anticipación). La estimación de dichos riesgos se lleva a cabo mediante la simulación de múltiples escenarios futuros con condiciones iniciales iguales a las del momento de la consulta, y la obtención de las probabilidades de fallo del suministro a las demandas, y de las probabilidades de estado de embalse.

Esta metodología ha sido aplicada dentro de este trabajo en la campaña de 2001/02 en el proceso de toma de decisiones de las comisiones de desembalse del río Júcar. Para ello se ha realizado mensualmente el cálculo de las probabilidades de fallo en el suministro a las demandas y de las probabilidades de estado de embalse, y los resultados obtenidos han sido presentados en cada una de las comisiones de desembalse realizadas a lo largo de la campaña, con lo cual ha quedado manifiesta la operatividad del sistema implantado.
10.5 ANÁLISIS PRÁCTICO DE ALGUNAS ESTRATEGIAS POSIBLES DE RESPUESTA

Por último, en el marco del trabajo descrito en los apartados anteriores se han analizado algunos casos prácticos, unos de interés general y otros de interés local, de posibles estrategias de respuesta en el ámbito del uso conjunto de recursos superficiales y subterráneos.

10.5.1 Estudio de electrificación de los pozos de sequía de la Acequia Real del Júcar

En este estudio se ha abordado el análisis de posibles actuaciones inmediatas en las zonas regables de los regadíos tradicionales del Júcar en las que más se acusan las situaciones de sequía prolongada.

Por su importancia, tamaño, características, y situación actual, se ha centrado el estudio de actuaciones en la zona regable de la Acequia Real del Júcar en la que se da la circunstancia de que, como consecuencia del episodio de sequía de 1995, se ejecutó por las distintas administraciones públicas implicadas (Confederación Hidrográfica del Júcar y Consejería de Agricultura Pesca y Alimentación), y por algunas Juntas Locales de la propia Acequia Real, un importante número de sondeos (pozos de sequía) que en la actualidad se encuentran dotados de los oportunos equipos de bombeo, haciendo posible, por tanto, la utilización conjunta de los recursos superficiales con los subterráneos de los dos niveles acuíferos potencialmente explotables en la zona (cuaternario y mioceno). No obstante lo anterior, resulta que en la situación actual, y dada la inexistencia de acometidas a las redes eléctricas en la mayoría de dichos pozos, solo es posible su explotación mediante la utilización de grupos a gas-oil con la presumible merma de eficacia económica y logística asociada a dicha realidad.

Así, y de acuerdo con todas las consideraciones anteriores, el objeto del estudio realizado ha consistido en el análisis de los costes de “electrificación” de los pozos de sequía todavía no “electrificados” de la zona regable de la Acequia Real del Júcar, así como de los costes de explotación en función de posibles reglas de operación que tuvieran viabilidad en el marco de las condiciones de contorno del sistema.

Sin entrar en los estudios adicionales del comportamiento del acuífero y del sistema total de recursos (que ya han sido comentados en otros apartados del presente documento), frente a las estrategias de explotación de los pozos de sequía de las distintas alternativas consideradas, que van desde una utilización coyuntural de los
pozos hasta una utilización sistemática enmarcada en un esquema de uso conjunto, todas ellas pueden catalogarse de interesantes, tanto desde el punto de vista de la satisfacción de las demandas como del impacto sobre el acuífero y el sistema de recursos, dado el carácter moderado del volumen total bombeado.

En este último sentido, y para las alternativas que suponen la utilización sistemática de los pozos en los meses de menores demandas, puede plantearse, incluso, su valor estratégico como reglas de explotación en el marco de un sistema de utilización conjunta de recursos superficiales y subterráneos de forma continuada.

La importancia del uso de estos pozos como pozos de sequía radica, más que en el volumen total de recursos movilizado, en que suponen el ahorro de un volumen superior de recurso superficial, y en la posibilidad de que este recurso sea liberado o intercambiado para otras zonas de demanda que no pueden acceder directamente al recursos subterráneo. Así, las demandas urbanas del Vinalopó pueden tener una garantía de suministro elevada mediante este procedimiento si costean los bombeos en la Ribera, y a cambio reciben el agua superficial que se libera.

Por lo que se refiere al análisis económico, y de acuerdo con los resultados obtenidos, el coste final por m³ extraído asociado a la “electrificación” de los pozos, en cualquiera de las alternativas de explotación consideradas, resulta muy competitivo y, en todo caso, más ventajoso que el correspondiente a la utilización de equipos a gas-oil.

Por otra parte, dada la competitividad del coste por m³ obtenido, y teniendo en cuenta que en dicho coste está incorporada la repercusión de la amortización de las inversiones asociadas, puede afirmarse que las actuaciones encaminadas a dotar de acometidas eléctricas a los pozos que en la actualidad no disponen de ellas tienen un alto grado de viabilidad económica.

Finalmente, si bien el estudio se ha centrado en la zona regable de la ARJ, sus planteamientos pueden, y deben, ser extrapolados a la totalidad de los regadíos tradicionales.

10.5.2 Estudio de los regadíos del río Magro

El objeto de este estudio ha sido el análisis pormenorizado de las superficies regadas en el entorno del río Magro, aguas abajo del embalse de Forata, sus demandas y recursos, como caso singular, dentro del sistema Júcar, en el que convenía entrar en detalle para analizar la sostenibilidad del sistema y propuestas de actuaciones.
El estudio se ha desarrollado sobre la parte del sistema del río Magro comprendida desde Forata hasta la zona regable del Canal Júcar-Turía que, siendo una superficie dedicada esencialmente al cultivo de cítricos, se compone de una zona de regadío con agua superficial que se suministra desde el propio embalse de Forata mediante derivaciones en el cauce del río, y de las zonas de regadío con aguas subterráneas que se extienden en el entorno de la anterior.

Desde un punto de vista de análisis de recursos y demandas el sistema se compone, en lo que a demandas se refiere, de las superficies de riego citadas en el párrafo anterior así como de las zonas urbanas e industriales cuyas demandas se suministran con recursos del mismo origen que las de riego, es decir, los recursos del Magro regulados en Forata y parte de los recursos subterráneos de los acuíferos del Ave y de la Contienda (en el Caroch Norte) y del acuífero de Buñol-Cheste.

Desde el año 1968, en el que entró en explotación el embalse de Forata, hasta el año 1.996, la superficie de regadío con aguas superficiales reguladas en el embalse era de unas 4.276 Has de distintas comunidades de regantes agrupadas en el llamado “Sindicato Central de Forata”. A partir del año 1.996 una parte de esta superficie dejó de pertenecer a este sindicato, para integrarse en la zona regable del Canal Júcar-Turía, quedando reducida su superficie a 1.238 Has.

Con estos antecedentes podría deducirse, sin otras consideraciones adicionales, que como consecuencia inmediata de la disminución de la superficie regable dependiente de Forata debería haberse producido un incremento notable de las garantías de riego. La realidad, sin embargo, ha sido la contraria en el sentido de que, precisamente en los últimos años, ha habido problemas en relación con la satisfacción de las demandas.

A estos hechos, relativos a las demandas de los recursos superficiales regulados en Forata, hay que añadir la situación actual de las demandas agrícolas, urbanas e industriales, que se suministran con recursos subterráneos de los acuíferos citados en un párrafo anterior y que, a tenor de las informaciones disponibles, parecen tener, así mismo, problemas de garantías de satisfacción de demandas incluso en años de pluviometría “normal”.

Para abordar el análisis y diagnóstico de la situación actual, y de la sostenibilidad del sistema, se ha llevado a cabo, en primer lugar, un trabajo detallado de delimitación de superficies y caracterización de las demandas seguido, a continuación, de un estudio
detallado de los recursos, tanto superficiales como subterráneos, para establecer las garantías de suministro.

Como conclusión global de este análisis, puede decirse que existen recursos superficiales suficientes para satisfacer las correspondientes demandas, aunque de forma un poco ajustada, y que, por tanto, los problemas que se sufren casi permanentemente en estos regadíos son de naturaleza distinta a la de desequilibrios entre recursos y demandas, a excepción naturalmente de situaciones coyunturales de sequía. La problemática real de los aprovechamientos superficiales se reduce, finalmente, a zonas locales en la cola del sistema y en épocas de sequía y, en todo caso, con una magnitud muy acotada.

Por lo que se refiere a los aprovechamientos subterráneos, y una vez conocidas las demandas subterráneas del sistema tras realizar un inventario de los pozos, se ha establecido un balance local de las unidades hidrogeológicas de la zona de estudio que refleja un equilibrio ajustado entre entradas y salidas a los mismos en los casos del acuífero de Buñol-Cheste y de los acuíferos del Ave y de la Contienda (Caroch-Norte). Únicamente en la zona que se sitúa sobre el acuífero de la Plana Sur de Valencia es propicia para aumentar su explotación pues es el que tiene un balance menos ajustado. Así, con carácter general, se concluye el estricto estado de equilibrio actual entre recursos y demandas así como la posibilidad, y conveniencia, de adoptar medidas para incrementar los recursos disponibles (Construcción de pozos para colaborar en el abastecimiento del regadío superficial, creación de elementos de regulación de recursos superficiales no regulados como los del río Buñol, importación de recursos desde el Canal Júcar-Turia o la reutilización de aguas residuales depuradas) o medidas para lograr más eficacia en la gestión de dichos recursos (Eliminación de tomas no autorizadas y equipamiento de control de las autorizadas, modernización del regadío o incremento de la eficiencia de transporte de los recursos desde Forata.

Tras un análisis previo de estas posibles actuaciones, se ha desarrollado un análisis económico de dos de ellas que, a priori, resultaban más interesantes, tales como la construcción de pozos y la creación de una balza de regulación de los recursos invernales del río Buñol.

De estas dos alternativas, la más competitiva desde el punto de vista de su viabilidad técnica y económica, ha resultado ser la construcción de unos pozos en los términos
municipales de Alfarp, Catadau y Llombay que complementen las aguas procedentes de Forata.

La construcción de estos pozos, y el uso conjunto que se propone asociado a su explotación, no es incompatible con otras de las medidas propuestas en este mismo estudio, como pueden ser la modernización de los regadíos, la reutilización de aguas residuales, control de tomas no autorizadas etc., que junto a los nuevos pozos permitirán un uso más racional del recurso hídrico y la sostenibilidad de los regadíos del Magro.

10.5.3 Estudio del abastecimiento de agua potable a la Ribera

También en el ámbito del sistema Júcar, y como caso singular, que afecta directamente a un importante número de habitantes e indirectamente a una zona húmeda de gran importancia medioambiental, ha surgido la necesidad de analizar la problemática que se está planteando en algunos municipios de las comarcas agrícolas de la Comunidad Valenciana, cuya fuente de suministro es de origen subterráneo, con la continua degradación de la calidad de las aguas subterráneas en la mayoría de las captaciones debido a las prácticas de fertilización asociadas a las labores agrícolas.

En este estudio, el planteamiento del uso conjunto no se hecho únicamente en base a una mejora de las garantías de dichos abastecimientos sino como una medida que asegure la calidad de las aguas destinadas al consumo humano en el conjunto de los municipios de Alzira, Algemesí, Albalat de la Ribera, Carcaixent, Corbera, Cullera, Favara, Fontaleny, Llaurí, Riola y Sueca. El conjunto de estos municipios en el que habitan más de 350.000 personas presenta una demandas urbana del orden de los 22 hm³/año.

Como antecedentes, cabe citar que la Consellería de Obras Públicas de la Generalidad Valenciana redactó, en 1998, un “Proyecto básico del Abastecimiento de Agua potable a las comarcas de la Ribera” (COPUT, 1998b), diseñando una solución que se basa, esencialmente, en mezclar el agua subterránea de los actuales pozos de abastecimiento de estos municipios, que extraen el agua del acuífero de la Plana-Sur (de elevados nitratos), con aguas procedentes de pozos situados en el acuífero del Caroch Norte (con poca concentración de nitratos), de manera que la mezcla de agua de distintas calidades proporcione un contenido en nitratos resultante que la haga apta para el consumo humano.
No obstante lo anterior, y aunque solo sea con carácter de conjetura, la ubicación de las captaciones previstas en el Caroch Norte podría llevar consigo un problema medioambiental que se concreta en la posible afección de los bombeos a “Els Ullals” del Río Verde. Por otra parte, la solución proyectada podría tener otro punto débil en el hecho de que su diseño se basa en unos contenidos en nitratos (tanto de los pozos actuales de abastecimientos desde el acuífero de la Plana Sur, como de los pozos del acuífero del Caroch Norte) que pueden evolucionar hacia mayores concentraciones futuras, comprometiendo la eficacia de las actuaciones emprendidas.

Por dicho motivo se ha considerado conveniente estudiar unas soluciones alternativas al suministro de recursos de bajo contenido en nitratos desde el Caroch que, siendo económicamente y técnicamente viables, obvien los posibles problemas de la solución proyectada aprovechando, al mismo tiempo, casi todos sus elementos. En esencia, las soluciones alternativas estudiadas se han basado en los mismos planteamientos de la solución proyectada, en el sentido de mezclar el agua de baja calidad de los abastecimientos actuales (agua subterránea del acuífero de la Plana Sur) con agua de mejor calidad, cambiando el origen de esta última (agua subterránea del Caroch Norte) por agua superficial procedente del embalse de Tous, con un contenido en nitratos muy bajo que permite, por tanto, alcanzar el objetivo de obtener unas aguas de abastecimiento dentro de los parámetros de calidad exigibles, evitando o resolviendo, además, los posibles problemas de la solución proyectada y, todo ello, en el marco de una viabilidad técnica y económica muy satisfactoria.

No obstante, dado que dicho suministro no esta contemplado en el actual Plan Hidrológico de cuenca (CHJ, 1998) en el caso de que se llevaran a cabo las medidas propuestas, dichos cambios deberían recogerse en las revisiones futuras del Plan de Cuenca.

10.5.4 Estudio de utilización conjunta en l’Horta Nord y Camp del Turia

Finalmente, en este estudio se ha propuesto un caso práctico de uso conjunto de los recursos hídricos superficiales y subterráneos entre dos de las principales unidades de demanda agraria del sistema de explotación Turia, Canal Camp del Turia y Real Acequia de Moncada.

En la actualidad los regadíos del Canal Camp del Turia se abastecen, mediante el uso conjunto, de recursos hídricos superficiales y subterráneos. Por el contrario, los regadíos
de la Real Acequia de Moncada riegan con aguas superficiales y con la baja eficiencia propia de los regadíos tradicionales.

En este contexto, y de acuerdo con los objetivos del estudio, se ha analizado la situación actual de las correspondientes unidades hidrogeológicas (Plana de Valencia Norte, Llíria-Casinos y Medio Palancia), en cuanto que es absolutamente necesario conocer el estado de las mismas de cara a un posible uso conjunto de recursos superficiales y subterráneos, resultando que el acuífero Llíria-Casinos es uno de los más explotados de la cuenca del Turia, en contraste con el acuífero de la Plana Norte de Valencia cuyos recursos podrían permitir una explotación mayor que la actual.

Por ello, y tras el oportuno análisis, se ha planteado la posibilidad de establecer la explotación conjunta de los recursos superficiales y subterráneos de la zona regada por la acequia de Moncada que, unida a la reutilización de las aguas residuales depuradas del área metropolitana de Valencia y a los ahorros producidos en la misma por las obras de modernización, mejoraría sustancialmente las garantías actuales de dicha zona.

Este planteamiento de uso conjunto permitiría, por otra parte, una liberación de recursos superficiales en el embalse de Benagéber que podrían mejorar los suministros a las poblaciones de Ribarroja, La Eliana, Beneguacil, etc., que actualmente se abastecen de aguas subterráneas del acuífero Llíria-Casinos disminuyendo, así la presión actual sobre el acuífero y, todo ello, en consonancia con lo establecido por el Plan Hidrológico de cuenca del Júcar.

Sobre la base de estas consideraciones se han analizado tres alternativas de uso conjunto, en la zona de la Acequia de Moncada, basadas en la utilización de 7 pozos de sequía existentes, construidos por la Consellería de Agricultura en 1994-95, para un bombeo anual de unos 5 hm3, 10 hm3 y 20 hm3.

El análisis de los costes de inversión y explotación, asociados a estas alternativas, ha mostrado la viabilidad de todas ellas si bien, por razones de tipo funcional y de moderación en la explotación del acuífero de la Plana Norte de Valencia, se concluye, finalmente, que la alternativa más convincente es la relativa a una extracción de unos 10 hm3 anuales del citado acuífero.

Concretamente, la propuesta final de actuaciones para el uso conjunto de recursos superficiales y subterráneos en la zona regable de la Acequia de Moncada que en la actualidad se suministra exclusivamente de recursos superficiales del Turia regulados en
el embalse de Benagéber, consiste en la construcción de 8 pozos de una capacidad de extracción de 125 l/s cada uno que, junto con la electrificación de 7 pozos de sequía existentes, permitan el bombeo de 10 hm3 del acuífero de la Plana Norte de Valencia para su utilización en el suministro de riegos de la zona.

La incorporación de estos recursos subterráneos, junto con la futura reutilización de aguas residuales depuradas en el área metropolitana de Valencia, comentada en un apartado anterior, pueden mejorar las garantías de los riegos de la Acequia de Moncada produciendo, adicionalmente y como ya se ha dicho, una liberación de recursos superficiales en el embalse de Benagéber que podrán utilizarse para sustituir bombeos de abastecimientos urbanos en el acuífero Llíria-Casinos disminuyendo, así, su intensa explotación actual.
11 REFERENCIAS

CHJ, 1989. “Caracterización estadística de los recursos subterráneos que afluyen al Júcar aguas abajo de Tous”, realizado por la Confederación Hidrográfica del Júcar en 1.989

COPUT, 1996 “Inventario de infraestructuras de abastecimiento urbano” de la Consellería de Obras Públicas, Urbanismo y Transportes

COPUT 1998b. "Proyecto básico del Abastecimiento de Agua potable a las comarcas de la Ribera”

DIHMA, 1997. “Modelos de evaluación y gestión de recursos hidráulicos del Júcar, incluyendo el análisis del comportamiento del acuífero de La Plana”. Realizado por un convenio entre DIHMA e INCISA para la DGOH y la CHJ.

DGOH, 1982. “Modelo Matemático de Simulación para el Sistema Hidrográfico conjunto de los ríos Júcar y Turia”, UPV, para MOPU, DGOH, CHJ.

DGOH, 1987. “Actualización del inventario de recursos hidráulicos y de disponibilidades de agua de la cuenca hidrográfica del Júcar”. PROINTEC, para el MOPU, DGOH, CHJ.

DGOH, 1989b. “Evaluación de las demandas ambientales en puntos críticos de la cuenca y elaboración de un modelo de gestión de los recursos del sistema Júcar-Turía”.

DGOH, 1993. “Estudio del seguimiento del impacto de las extracciones de aguas subterráneas en los acuíferos de la Mancha Oriental y los caudales del río Júcar”.

ITAP, 2001, “Plan de Explotación 2001” de la unidad hidrogeológica de la Mancha Oriental, realizado por el Instituto Técnico Agronómico Provincial de Albacete

MOPU, 1990. “Unidades hidrogeológicas de la España Peninsular e Islas Baleares”. Síntesis de sus características y mapa a escala 1:1.000.000. Del Servicio Geológico de Obras Públicas e Instituto Geológico y Minero de España, Diciembre de 1990.

OPH, 2001a. “Revisión y actualización de los recursos hídricos superficiales del río Turia”, realizado por la Oficina de Planificación Hidrológica de la Confederación Hidrográfica del Júcar.

OPH, 2001b. “Revisión y actualización de los recursos hídricos superficiales del río Júcar”.

OPH, 2001c. “Análisis y Revisión de los principales suministros superficiales del río Turia”.

OPH, 2001d. “Análisis y Revisión de los principales suministros superficiales del río Júcar”.

OPH, 2001e. “Seguimiento del balance hídrico de las unidades hidrogeológicas dentro del ámbito de la confederación Hidrográfica del Júcar”.

OPH, 2002. “Revisión y actualización de los recursos hídricos superficiales del río Júcar”. Oficina de Planificación Hidrológica (OPH) de la Confederación Hidrográfica del Júcar CHJ.

OPH, 2002b. “Análisis y revisión de los principales suministros superficiales del río Júcar” Oficina de Planificación Hidrológica (OPH) de la Confederación Hidrográfica del Júcar CHJ.

USUJ, 1991. “Estudio sobre los efectos en el sistema de recursos hidráulicos de los ríos Júcar y Turia de los regadíos del canal de Albacete y Manchuela Centro previstos por el Real Decreto 950/1989, de 29 de Julio”.

Documento de Síntesis